Светодиодный драйвер из энергосберегающей лампы. Драйвер для светодиодов из энергосберегающей лампы. Драйверы для светодиодных ламп

Блок питания: что можно сделать из энергосберегающей лампы?

Несмотря на небольшие размеры энергосберегающих ламп, в них много электронных компонентов. По своему устройству это обычная трубчатая люминесцентная лампа с миниатюрной колбой, но только свернутой в спираль или иную пространственную компактную линию. Ее поэтому называют компактной люминесцентной лампой (в сокращении КЛЛ).

И для нее характерны все те же самые проблемы и неисправности, что и для больших трубчатых лампочек. Но электронный балласт лампочки, которая перестала светить, скорее всего, из-за перегоревшей спирали, обычно сохраняет свою работоспособность. Поэтому его можно использовать для каких-либо целей как импульсный блок питания (в сокращении ИБП), но с предварительной доработкой. Об этом и пойдет речь далее. Наши читатели узнают, как сделать блок питания из энергосберегающей лампы.

В чем разница между ИБП и электронным балластом

Сразу предупредим тех, кто ожидает получение мощного источника питания из КЛЛ – большую мощность получить в результате простой переделки балласта нельзя. Дело в том, что в катушках индуктивности, которые содержат сердечники, рабочая зона намагничивания жестко ограничена конструкцией и свойствами намагничивающего напряжения. Поэтому импульсы этого напряжения, создаваемые транзисторами, точно подобраны и определены элементами схемы. Но такой блок питания из ЭПРА вполне достаточен для питания светодиодной ленты. Тем более что импульсный блок питания из энергосберегающей лампы соответствует ее мощности. А она может быть до 100 Вт.

Наиболее распространенная схема балласта КЛЛ построена по схеме полумоста (инвертора). Это автогенератор на основе трансформатора TV. Обмотка TV1-3 намагничивает сердечник и выполняет при этом функцию дросселя для ограничения тока через лампу EL3. Обмотки TV1-1 и TV1-2 обеспечивают положительную обратную связь для появления напряжения, управляющего транзисторами VT1и VT2. На схеме красным цветом показана колба КЛЛ с элементами, которые обеспечивают ее запуск.

Пример распространённой схемы балласта ККЛ

Пример распространенной схемы балласта КЛЛ

Все катушки индуктивности и емкости в схеме подобраны так, чтобы получить в лампе точно дозированную мощность. С ее величиной связана работоспособность транзисторов. А поскольку они не имеют радиаторов, не рекомендуется стремиться получать от переделанного балласта значительную мощность. В трансформаторе балласта нет вторичной обмотки, от которой питается нагрузка. В этом главное отличие его от ИБП.

В чем суть реконструкции балласта

Чтобы получить возможность подключения нагрузки к отдельной обмотке, надо либо намотать ее на дросселе L5, либо применить дополнительный трансформатор. Переделка балласта в ИБП предусматривает:

    разборку корпуса балласта КЛЛ. Это можно сделать отверткой, которую надо поочередно, шаг за шагом вставлять по линии соприкосновения его деталей. Прилагаемое к лампе усилие не должно быть чрезмерным для колбы. Надо постараться давить на нее с минимальной силой.

Для дальнейшей переделки электронного балласта в блок питания из энергосберегающей лампы надо принять решение относительно трансформатора:

  • использовать имеющийся дроссель, доработав его;
  • либо применить новый трансформатор.

Трансформатор из дросселя

Далее рассмотрим оба варианта. Для того чтобы воспользоваться дросселем из электронного балласта, его надо выпаять из платы и затем разобрать. Если в нем применен Ш-образный сердечник, он содержит две одинаковые части, которые соединены между собой. В рассматриваемом примере для этой цели применена оранжевая клейкая лента. Она аккуратно удаляется.

Читайте также:
Резать-плинтус-без-стусла

Удаление ленты стягивающей половинки сердечника

Удаление ленты, стягивающей половинки сердечника

Половинки сердечника обычно склеены так, чтобы между ними оставался зазор. Он служит для оптимизации намагничивания сердечника, замедляя этот процесс и ограничивая скорость нарастания тока. Берем наш импульсный паяльник и нагреваем сердечник. Прикладываем его к паяльнику местами соединения половинок.

Рассоединяем склеенные половины сердечника

Рассоединяем склеенные половины сердечника

Разобрав сердечник, получаем доступ к катушке с намотанным проводом. Обмотку, которая уже есть на катушке, отматывать не рекомендуется. От этого изменится режим намагничивания. Если свободное место между сердечником и катушкой позволяет обернуть один слой стеклоткани для улучшения изоляции обмоток друг от друга, надо сделать это. А потом намотать десять витков вторичной обмотки проводом подходящей толщины. Поскольку мощность нашего блока питания будет небольшой, толстый провод не нужен. Главное, чтобы он поместился на катушке, и половинки сердечника наделись на него.

Разобранный дроссель

Разобранный дроссель

Намотав вторичную обмотку, собираем сердечник и закрепляем половинки клейкой лентой. Предполагаем, что после тестирования БП станет понятно, какое напряжение создается одним витком. После тестирования разберем трансформатор и добавим необходимое число витков. Обычно переделка имеет целью сделать преобразователь напряжения с выходом 12 В. Это позволяет получить при использовании стабилизации зарядное устройство для аккумулятора. На такое же напряжение можно сделать и драйвер для светодиодов из энергосберегающей лампы, а также зарядить фонарик с питанием от аккумулятора.

Поскольку трансформатор нашего ИБП, скорее всего, придется доматывать, впаивать его в плату не стоит. Лучше припаять проводки, торчащие из платы, и к ним на время тестирования припаять выводы нашего трансформатора. Концы выводов вторичной обмотки надо очистить от изоляции и покрыть припоем. Затем либо на отдельной панельке, либо прямо на выводах намотанной обмотки надо собрать выпрямитель на высокочастотных диодах по схеме моста. Для фильтрации в процессе измерения напряжения достаточно конденсатора 1 мкФ 50 В.

Готовая к тестированию плата с выпрямителем Схема импульсного блока питания

Тестирование ИБП

Но перед присоединением к сети 220 В последовательно с нашим блоком, переделанным своими руками из лампы, обязательно соединяется мощный резистор. Это мера соблюдения безопасности. Если через импульсные транзисторы в блоке питания потечет ток короткого замыкания, резистор его ограничит. Очень удобным резистором в таком случае может стать лампочка накаливания на 220 В. По мощности достаточно применить 40–100-ваттную лампу. При коротком замыкании в нашем устройстве лампочка будет светиться.

Последовательное соединение платы с лампочкой перед подачей напряжения 220 В

Последовательное соединение платы с лампочкой перед подачей напряжения 220 В

Далее присоединяем к выпрямителю щупы мультиметра в режиме измерения постоянного напряжения и подаем напряжение 220 В на электрическую цепь с лампочкой и платой источника питания. Предварительно обязательно изолируются скрутки и открытые токоведущие части. Для подачи напряжения рекомендуется применить проводной выключатель, а лампочку вложить в литровую банку. Иногда они при включении лопаются, а осколки разлетаются по сторонам. Обычно испытания проходят без проблем.

Более мощный ИБП с отдельным трансформатором

Они позволяют определить напряжение и необходимое число витков. Трансформатор дорабатывается, блок снова испытывается, и после этого его можно применить как компактный источник питания, который намного меньше аналога на основе обычного трансформатора 220 В со стальным сердечником.

Чтобы увеличить мощность источника питания, надо применить отдельный трансформатор, сделанный аналогично из дросселя. Его можно извлечь из лампочки большей мощности, сгоревшей полностью вместе с полупроводниковыми изделиями балласта. За основу берется та же схема, которая отличается присоединением дополнительного трансформатора и некоторых других деталей, изображенных красными линиями.

Читайте также:
Натяжной потолок способен удерживать большой объем воды

ИБП с дополнительным трансформатором

ИБП с дополнительным трансформатором

Выпрямитель, показанный на изображении, содержит меньше диодов по сравнению с выпрямительным мостом. Но для его работы потребуется больше витков вторичной обмотки. Если они не вмещаются в трансформатор, надо применить выпрямительный мост. Более мощный трансформатор делается, например, для галогенок. Кто использовал обычный трансформатор для системы освещения с галогенками, знает, что они питаются достаточно большим по величине током. Поэтому трансформатор получается громоздким.

Если транзисторы разместить на радиаторах, мощность одного блока питания можно заметно увеличить. А по весу и габаритам даже несколько таких ИБП для работы с галогенными светильниками получатся меньше и легче одного трансформатора со стальным сердечником равной им мощности. Другим вариантом использования работоспособных балластов экономок может быть их реконструкция для светодиодной лампы. Переделка энергосберегающей лампы в светодиодную конструкцию очень проста. Лампа отсоединяется, а вместо нее подключается диодный мост.

На выходе моста подключается определенное количество светодиодов. Их можно подключить между собой последовательно. Важно, чтобы ток светодиода равнялся току в КЛЛ. Энергосберегающие лампочки можно назвать ценным полезным ископаемым в эпоху светодиодного освещения. Они могут найти применение даже после завершения своего срока службы. И теперь читатель знает детали этого применения.

Переделка энергосберегающей лампы в светодиодную

Энергосберегающие лампы активно позиционировались как замена низкоэкономичным и ненадежным лампам накаливания. Постепенное снижение цен на «экономки» привело к тому, что они получили практически повсеместное распространение.

Прогресс не стоит на месте и на смену энергосберегающим люминесцентным лампам приходят светодиодные источники света. Имея большую экономичность, они превосходят энергосберегающие лампы по экологичности, поскольку люминесцентные лампы содержат ядовитую ртуть, а светодиоды абсолютно безопасны (подробнее о вреде светодиодных ламп).

Самый большой минус светодиодов – их высокая стоимость. Не удивительно, что многие занимаются переделкой энергосберегающих ламп в светодиодные, используя по максимуму доступную и недорогую элементную базу.

Использование платы питания энергосберегающей лампы в качестве драйвера для светодиодов

Теоретическое обоснование

Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока, по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.

Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.

Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.

Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.

Практическая реализация идеи

Простейший источник питания светодиодов от сети 220В имеет следующий вид:

Примитивный источник питания для светодиодов от сети 220В

Примитивный источник питания для светодиодов от сети 220В

На приведенном рисунке резистор обеспечивает падение излишка напряжения питающей сети, а диод, включенный параллельно, защищает LED элемент от импульсов напряжения обратной полярности.

Читайте также:
Полезные и практичные советы по дизайну интерьера квартиры

Как видно из рисунка, что можно проверить расчетами, требуется гасящий резистор большой мощности, выделяющий во время работы много тепла.

Ниже приведена схема, где вместо резистора используется гасящий конденсатор

Схема с гасящим конденсатором

Схема с гасящим конденсатором

Использование в качестве балласта конденсатора позволяет избавиться от мощного резистора и повысить КПД схемы. Резистор R1 ограничивает ток в момент включения схемы, R2 служит для быстрого разряда конденсатора в момент выключения. R3 дополнительно ограничивает ток через группу светодиодов.

Конденсатор С1 служит для гашения излишков напряжения, а С2 сглаживает пульсации питания.

Диодный мост образован четырьмя диодами типа 1N4007, которые можно выпаять из негодной энергосберегающей лампы.

Расчет схемы произведен для светодиодов HL-654H245WC с рабочим током 20мА. Не исключено применение аналогичных элементов с таки током.

Так же, как и в предыдущей схеме, здесь не обеспечивается стабилизация тока. Чтобы исключить выход светодиодов из строя, в схеме балласта для светодиодных ламп емкость конденсатора С1 и сопротивление резистора R3 выбраны с запасом, чтобы при максимальном входном напряжении и повышенной температуре светодиодов, ток через них не превышал допустимых значений. В нормальном режиме ток через диоды несколько менее номинального, но на яркости лампы это практически не сказывается.

Недостаток подобной схемы заключается в том, что использование более мощных светодиодов потребует увеличение емкости гасящего конденсатора, имеющего большие габариты.

Аналогично выполняется питание светодиодной ленты от платы энергосберегающей лампы. Важно, чтобы ток светодиодной ленты соответствовал линейке светодиодов, то есть 20мА.

Используем драйвер энергосберегающей лампы

Более надежна схема, когда используется драйвер из энергосберегающей лампы с минимальными переделками. В качестве примера на рисунке показана переделка энергосберегающей лампы мощностью 20Вт для питания мощного светодиода с током потребления 0.9А.

Драйвер питания с минимальной доработкой

Переделка светодиодной лампы для питания светодиодов

Переделка электронного балласта для светодиодных ламп в данном примере минимальна. Большая часть элементов в схеме оставлена от драйвера старой лампы. Изменениям подвергся дроссель L3 и добавлен выпрямительный мост. В старой схеме между правым выводом конденсатора С10 и катодом диода D5 была включена люминесцентная лампа.

Теперь конденсатор и диод соединены напрямую, а дроссель используется в качестве трансформатора.

Переделка дросселя заключается в намотке вторичной обмотки, с которой и будет сниматься напряжение для питания светодиода.

Не разбирая дроссель, на него нужно намотать 20 витков эмалированного провода диаметром 0.4мм. При включении напряжение холостого хода вновь выполненной обмотки должно составлять около 9.5–9.7В. После подключения моста и светодиода, амперметр, включенный в разрыв питания LED элемента, должен показывать около 830–850мА. Большее или меньшее значение требует коррекции количества витков трансформатора.

Диоды 1N4007 или аналогичные, можно использовать от другой неисправной лампы. Диоды в экономках используются с большим запасом по току и напряжению, поэтому выходят из строя крайне редко.

Советы и предостережения

Все приведенные схемы светодиодных драйверов из энергосберегающей лампы, хоть и обеспечивают низковольтное питание, имеют гальваническую связь с сетью переменного тока, поэтому при работе по отладке нужно соблюдать меры предосторожности.

Наилучшим и самым безопасным будет использование при работе разделяющего трансформатора с одинаковыми первичной и вторичной обмотками. Имея на выходе те же самые 220В, трансформатор будет обеспечивать надежную гальваническую развязку первичной и вторичной цепей.

Читайте также:
Особенности использования и преимущества композитной черепицы: виды и характеристики

Модернизация энергосберегающей лампы в светодиодную №1

Большое спасибо изготовителям современных энергосберегающих ламп. Качество их продукции постоянно заставляет шевелить мозгами и подталкивает к новым техническим решениям.
Вот и в этот раз рассмотрим тему переделки вышедшей из строя энергосберегающей лампы в светодиодную. Сегодня мы пойдем по более традиционному пути с использованием драйвера для светодиода, но… Самой интересной частью переделки является сам светодиод.
На днях мне попали в руки несколько образцов китайской электронной промышленности. Эти светодиоды сами по себе интересны, хотя и не обладают выдающимися характеристиками. Но одно то, что данный светодиод обеспечивает круговую диаграмму направленности, поднимает его на совершенно новый уровень и дает нам в руки прекрасный инструмент для модернизации систем освещения.

светодиод

характеристики светодиодов

В качестве радиатора я использовал уже известный из прошлой статьи алюминиевый универсальный профиль АП888 производства ООО «Юг-сервис». К сожалению у меня остался только обрезок толщиной чуть более 10 мм. Было опасение, что для светодиода мощность 9 Вт его может не хватить. Но стремление провести эксперимент победило.
Маленький недостаток данного профиля по отношению к новому светодиоду – центральное отверстие диаметром 8 мм, а резьба «хвоста» светодиода М6.

Выход самый простой:
– рассверливаем отверстие до 10 мм;
– в гайку М6 вкручиваем болт;
– аккуратно, ударяя молотком по головке болта, запрессовываем гайку в профиль. Болт нужен для того, чтобы случайно не замять резьбу в гайке.

запрессовываем гайку

ударяя молотком

Светодиод 7В, мощностью 7-9 Вт, 12 В, 600-800 мА. В качестве драйвера я использовал широко распространенный драйвер на 700 мА для трех светодиодов того же китайского производства.
Дальше как всегда все просто. Разбирать энергосберегающую лампочку умеем, главное не разбить колбу. И готовим весь комплект для сборки .

комплект для сборки

1. Просверлить отверстия в крышке корпуса цоколя для крепления радиатора и провода.

Просверлить отверстия

2. Плюсовой провод драйвера подпаять к центральному контакту светодиода. Не забудьте предварительно продернуть его через радиатор и крышку цоколя .

контакту светодиода

3. Нанести теплопроводную пасту (КТП-8) на резьбу светодиода и вкрутить его на место. Крепим крышку корпуса цоколя к радиатору.

Нанести теплопроводную пасту

вкрутить светодиод

Крепим крышку корпуса

4. Минусовой провод драйвера необходимо соединить с радиатором .

минус соединить с радиатором

5. Впаять сетевые провода драйвера в цоколь.

Впаять сетевые провода драйвера

6. Собрать все во едино.

Собрать все

7. Модернизированная лампа готова к эксплуатации.

Модернизированная лампа

готова к эксплуатации

Что касается моих опасений по поводу перегрева светодиода из-за недостаточного размера радиатора, то можно сказать, что они оказались беспочвенными. Температура в точке «светодиод-радиатор» после нескольких часов работы остановилась в районе 59-62 ºС (температура окружающей среды 23 ºС). В принципе допустимо, но если радиатор увеличить на 5-10 мм, то можно вообще ни о чем не беспокоиться.
Все просто, красиво и самое главное – доступно и не дорого.

Переделка энергосберегающей лампы в светодиодную

Тут как раз продолжим рассматривать наш вариант, который мы затронули выше, с конденсатором. Итак, если даже визуально видать, или вы определили неисправность радиоэлемента путем применения измерительного прибора, то деталь надо менять.

Берем паяльник и выпаиваем радиоэлемент

Тут важно не перегреть соседние элементы, не сломать ножки, не нарушить контакты, не перегреть печатную плату, чтобы избежать отслоения фольги от текстолита. Меняем конденсатор

Читайте также:
Подключение электрического полотенцесушителя

Дальше изолируем плату от возможного контакта с токопроводящими поверхностями и собираем все в возвратном порядке.

При установке платы со светодиодами на место, необходимо обновить термопасту, какая обеспечивает передачу тепла от платы светодиодов, до радиатора рассеивающего тепло.

Перед склеиванием корпуса испытываем работоспособность и приклеиваем рассеиватель на лампу. Этот случай относился к ремонту лампы линией замены радиоэлемента.

Ремонт светодиодной лампы с заменой драйвера для светодиодов

Если вы не желаете заниматься поиском сгоревшей радиодетали или у вас просто нет такой возможности. Произнесём, нет в настоящее время мультиметра для проверки детали, то можно поступить несколько несложнее. Идете до ближайшего радиомагазина в вашем городе и покупаете так называемый драйвер. По сути, стабилизатор усилия для светодиодов

Здесь важно выбрать стабилизатор, который будет обеспечивать труд светодиодов нужной мощности. То есть смотрим на заявленную мощность лампы и упрашиваем драйвер, который может обеспечить данную мощность

Теперь подавайте вновь обратимся к конкретному случаю.

Откручиваем отражатель от корпуса.

Снимаем рассеиватели светодиодов.

Обрезаем провода от престарелого драйвера, лучше выпаять, чтобы обеспечить соединение между платой драйвера одним цельным проводом.

Припаиваем провода новоиспеченного драйвера на место старых.

Здесь важно не перепутать вход и выход, по-иному все сгорит, так и не заработав

Еще раз все проверяем и собираем лампу обратно. При необходимости изолируем драйвер и наносим термопасту. Этот вариант неплох тем, что здесь фактически необходимо перекусить провода на входе и на выходе у престарелого драйвера, подключить провода от новой платы и все. Лампу можно собирать назад. Единственное ограничение, этот вариант не подойдет в случае, если неисправностью является перегоревший светодиод.

Если вам негде приобрести драйвер, а может просто хотите испытать свои силы в радиоконструировании, то вы можете сделать его сами. Благо отдельный из схем довольно простые в сборке, потребуют минимум радиоэлементов, и не бедствуют в наладке. Электросхемы драйверов для светодиодов, которые можно применить, в том числе и для светодиодной лампы, повергнуты в нашей статье «Драйверы для светодиодов своими руками». О самой же светодиодной лампе можно разузнать подробнее «Светодиодная лампа».

Простой драйвер светодиода от сети 220В

Для питания светодиоду требуется источник постоянного напряжения и устройство стабилизации тока – драйвер. А если требуется (или очень хочется) подключить светодиод к сети 220В? И светодиод, при этом, мощный? Простым резистором и диодом здесь не обойтись. Самый правильный, вернее, единственно правильный способ – использовать специализированный драйвер. Его можно даже самому собрать (читайте в статье «Схема драйвера для светодиодов от сети 220В»).

Впрочем, есть и менее правильные, но, в целом, рабочие варианты. Один из них – собрать стабилизатор тока для светодиода из обычной энергосберегающей лампы.

Прежде чем начнем, помните: все, что вы делаете, вы делаете на свой страх и риск! Мы не даем никакой гарантии, что получившийся прибор заработает у вас правильно. И не несем никакой ответственности за возможный ущерб или повреждения, которые, теоретически, могут случиться, если что-то пойдет не так, как задумано.

Читайте также:
Паутинный клещ на комнатных растениях — признаки заболевания и методы борьбы

Предстоит работать с опасным для жизни напряжением в 220В и, скорее всего, без точной технической документации на конкретную переделываемую лампу. Если вы не знаете правил предосторожностей при работе с высоким напряжением, не сильно уверенно держите в руках паяльник, то лучше откажитесь от этой затеи – в конце концов, готовый драйвер от сети 220В стоит не так уж дорого.

Но, если интересно, то вперед!

Обычная энергосберегайка, она же компактная люминесцентная лампа или КЛЛ, содержит в себе электронное устройство, обеспечивающее поджег и горение газоразрядных ламп. КЛЛ имеют очень приличный срок службы – до 10 000 часов, но с течением времени яркость их свечения снижается, они начинаю сильнее греться, начинают мерцать или вообще перестают светить. При этом, чаще всего, из строя выходит именно «стеклянная часть» лампы, а ее электроника остается в полном порядке. Поэтому, для экспериментов вполне подойдет старая лампа, которая перестала работать, а вы ее почему-то не выбросили. Если есть выбор, то лучше взять лампу помощнее. У меня для опытов оказался пациент, изображенный на картинке в начале статьи.

Запыленная и пожелтевшая лампа Maxus 26W верой и правдой отслужила несколько лет и была заменена, поскольку светить стала чуть ли не вдвое тусклее, чем нужно.

Аккуратно, по пояску открываем лампу.

Аккуратно открытая энергосберегающая лампа

Видим балласт, от которого два провода уходят к цоколю и четыре к стеклянным колбам. Откусываем их все и извлекаем электронную часть. Только внимательно – один из цокольных проводов к плате может идти через висящий резистор. Он тоже нужен, откусывайте за ним.

Получилась вот такая штучка.

Извлеченный балласт люминесцентной лампы – до переделки

Теперь от разрушения ламп переключимся к изучению их принципиальных схем. Импульсный преобразователь (электронный балласт) компактных люминесцентных ламп может различаться деталями для конкретных ламп, но принципиально его схема выглядит так:

Принципиальная схема балласта компактной люминесцентной лампы

Желтым цветом выделено то, что может значительно отличаться от лампы к лампе в зависимости от производителя и ее мощности. В любом случае, оставляем эту часть безо всяких изменений. То, что отмечено синим, останется бесхозным после удаления ламп (стеклянных колб) и может быть безболезненно удалено с платы, дабы не мешало.

Получится примерно так:

Импульсный преобразователь после удаления “лишних” деталей

После удаления «синей» части схемы, останется два проводника, повисших в воздухе. Их нужно соединить друг с другом – закоротить. Найдем что с чем соединять на конкретной плате.

Обратная сторона платы импульсного преобразователя

Как видно, нужно закоротить выход дросселя (он же вход в колбы) с выходом из колб по кратчайшему пути. Электроника вашей лампы, скорее всего, внешне будет отличаться от того, что вы видите на картинке. Важно понять сам принцип.

Следующий шаг – сделать из дросселя трансформатор, выпрямить получившийся ток и запитать им светодиоды.

Дело в том, что люминесцентные лампы питаются напряжением высокой частоты (до 50КГц). Соответственно, намотав на дроссель вторичную обмотку, можно получить на ней нужное напряжение.

Аккуратно выпаиваем дроссель. Дальше очень творческая задача – его разобрать. Дроссель состоит из катушки с проводом, в которую сверху и снизу вставляются две половинки Е-образного феррита. Разобрать дроссель – это значит разъединить спаявшиеся за года половинки тонкого и хрупкого феррита (которые еще иногда заливают лаком), снять их и получить свободный доступ к катушке с проводом. Удалите ленту, которая расположена по периметру феррита, после чего нежно и не прикладывая больших усилий, попробуйте его разъединить. Помогает нагревание – например, аккуратно паяльником по всему периметру феррита. У меня получилось, правда, далеко не сразу.

Читайте также:
Подходит ли лучевая система отопления для обогрева одноэтажного дома

Побежденный и разобранный дроссель

На открывшуюся катушку поверх наматываем вторичную обмотку. По моим наблюдениям один оборот вторичной обмотки дает в ней около 0.8В напряжения. В моих планах было запитать две линейки одноваттных светодиодов по 10шт. Для этого мне нужно около 30В напряжения. Итоговый ток требуется небольшой – до 200-250мА, поскольку светодиоды ну очень китайские.

В моем случае получилось 40 витков эмальпровода диаметром 0.25мм. Наматывайте аккуратно, поскольку дроссель потом нужно будет собрать обратно, т.е. вернуть ферриты на место. Не забудьте в конце узкой полоской изоленты или скотча скрепить между собой половинки феррита. Впаиваем дроссель обратно. Получится как-то так.

Результат работы – готовый “драйвер” из балласта энергосберегайки

Подключаем входное сетевое напряжение. Взрывов, фейерверков нет? Чудесно! Теперь аккуратно меряем переменное напряжение на выходах вторичной обмотки. Получилось то, что нужно? Здорово! Если нет, отключаемся от сети и отматываем (чтобы уменьшить) или добавляем (чтобы увеличить) несколько витков в обмотке. Разбирать дроссель для этого не нужно – просто аккуратно продевайте провод между катушкой и ферритом.

У меня две линейки светодиодов. Подключить их можно двумя способами – параллельно – для этого нужно предварительно выпрямить ток. Или встречно – для этого выпрямлять ток не нужно. На схеме это выглядит так.

Параллельное подключение двух линеек светодиодов

Параллельное подключение. Зеленая область – вторичная обмотка, диодный мост и светодиоды. Синяя линия – перемычка. Диодный мост собирается из быстрых диодов. Я взял 4 диода HER307.

Встречное подключение выглядит так:

Встречное подключение двух линеек светодиодов

Оба варианта имеют право на жизнь, я выбрал параллельное подключение с выпрямлением.

После сбора схемы подключите светодиоды через амперметр. Подключите питание. Если сила тока такая, как необходимо – отлично, если нет, то убирая/добавляя витки вторичной обмотки дросселя уменьшите или увеличьте ток.

Результат работы – светодиоды подключены и ярко светят.

У меня получилось около 200мА на две линейки по 10 светодиодов. Маловато, но для настольного светильника хватит.

Очень непривычно видеть подключение светодиодов напрямую от источника тока. Но здесь стабилизация тока достигается за счет точной стабилизации напряжения. И, в данном случае, если что-то произойдет с одной из параллельных линеек светодиодов, ток в оставшихся линейках не изменится, в отличие от обычного подключения через драйвер.

Правильно собранная схема должна иметь серьезный запас по мощности – у меня рабочая мощность 6 из 26 Вт. Ничего (кроме светодиодов) не должно существенно нагреваться в процессе работы (только проверяйте после отключения от сети).

В итоге получился компактный и практически бесплатный «драйвер», который позволил мне подключить светодиоды к сети 220В. Осталось соорудить корпус и смонтировать настольный светодиодный светильник. Но это уже другая история и о ней читайте в статье «Светодиодный светильник своими руками».

Читайте также:
Особенности зимнего ремонта мягкой кровли

Также, имеются готовые модели драйверов для светодиодов, без которых никак не обойтись, если будет нужно получить мощный и яркий свет.

Что такое драйвер и для чего он нужен светодиодам

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки .

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет. При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Читайте также:
Плитка для гаража: как выбрать правильно

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.
Читайте также:
Подключение электрического полотенцесушителя

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: