Резистор простым языком: что это такое, устройство, принцип работы, виды

Что такое резистор

Резистор — это электронное устройство. Оно относится к пассивным элементам электрической цепи, главным показателем которого считается активное сопротивление электрическому току во время работы. В переводе с латинского обозначает «сопротивляюсь».

Резистор — это электронное устройство. Оно относится к пассивным элементам электрической цепи, главным показателем которого считается активное сопротивление электрическому току во время работы. В переводе с латинского обозначает «сопротивляюсь».

Следует обратить внимание на три показателя данного компонента: номинальное сопротивление, класс точности и максимальная рассеиваемая мощность. В этой статье, будет детально рассмотрен вопрос — резистор что это, для чего создан и какие есть виды.

Внешний вид резистора

Все виды резистора — устройства очень простые: сердечник, к которому присоединены клеммы. Он препятствует прохождению тока, поэтому незаменим в любой электрической сети. Его применение в схемах различного типа связано напрямую с его емкостью, индуктивностью, температурой, поэтому в итоге его можно назвать достаточно сложным и многоцелевым компонентом.

Из чего состоит

Резистор — это устройство, которое имеет цилиндрическую форму и небольшие размеры. К его торцам прикреплены металлические ножки. В основном они изготовлены из проволоки, но встречаются образцы, где ножки сделаны из металлической ленты.

Есть и образцы других типов. Также конструкция резистора может быть изготовлена в виде параллелепипеда, есть керамические устройства, прямоугольные — для SMD технологий, позволяющие проводить установку на поверхности платы.

Виды резисторов

Все виды резистора имеют ряд отличительных характеристик, помимо сопротивления. Для их изготовления применяют различные материалы. Количество контактов у них также разное.

Никакая электронная аппаратура не может обойтись без указанных компонентов. Но в некоторых образцах они используются в качестве дискретных элементов, в других же — это составляющие интегральных микросхем. Резистор, характеристики которого различны, подбирается под конкретные задачи.

Рассмотрим основные разновидности указанных электронных образцов.

виды резистров

Имея разное назначение, резисторы делят на:

  • общего назначения;
  • специального назначения.

По типу смены сопротивления в цепи тока:

  • постоянные;
  • переменные подстроечные;
  • переменные регулировочные.

По характеру защиты от действия влаги:

  • незащищенные;
  • компаундированные;
  • впрессованные в пластмассу;
  • герметизированные;
  • лакированные;
  • вакуумные.

По способу сборки:

  • для печатной сборки;
  • для навесной:
  • для микросхем;
  • для микромодулей.

По вольт-амперным показателям:

По типу проводки:

  • проволочные;
  • ленточные.

По исходному материалу:

  • углеродистые;
  • металлопленочные;
  • металлоокисные;
  • композиционные;
  • проволочные;
  • интегральные.

По используемому материалу, из которого изготовлены

В производстве резисторов могут использовать проволоку, металлическую фольгу и неметаллические исходники. В первых, преимущественно в качестве сырья для производства проволоки берут нихром, никелин, константан. Для непроволочных образцов применяют пленки, у которых максимальные показатели сопротивления. В фольговых образцах резисторов применяется специальная фольга с необходимыми для резистора показателями. В толстопленочных образцах привлекают такие вещества как рутенит свинца, висмут, диоксид рутения.

Непроволочные модели бывают тонкослойными и композиционными. Тонкослойные получили такое название благодаря толщине: она составляет всего несколько нанометров. Композиционные намного толще — до десятых миллиметра.

Среди тонкослойных выделяют такие группы:

  • металлоокисные;
  • металлизированные;
  • углеродистые;
  • бороуглеродистые;
  • металлодиэлектрические.

Среди композиционных выделяют следующие типы резисторов:

Последние могут быть с органическим и неорганическим диэлектриком. Следует иметь в виду, что оба конца резистора идентичны в плане полярности.

По предназначению сопротивления

Резистивное сопротивление у компонентов постоянного и переменного характера имеет различные показатели. Постоянные образцы делятся на компоненты общего и специального назначения.

Полупроводники специального назначения делятся на группы:

  • высоковольтные;
  • высокочастотные;
  • высокомегаомные;
  • прецизионные.

Все эти компоненты имеют высокую стабильность, этим объясняется их задействование в приборах измерительного характера.

Переменные резисторы относятся к подстроечным или регулировочным образцам.

По числу контактов

Резисторы характеризуются контактами от одного до нескольких, этим и объясняется их основное назначение. Контакты тоже разнятся: SMD-резисторы оснащены соединительной площадкой, проволочные — спиралью из особого материала, металлопленочные — специальной пленкой, квантовые — контактами точечного воздействия, переменные — мобильными.

Основные характеристики электронных компонентов

К основным параметрам относят:

  • сопротивление номинального характера;
  • предельная рассеиваемая мощность;
  • коэффициент сопротивления (температурный);
  • технологический разброс (отличие/изменение от номинального показателя);
  • граничное рабочее напряжение;
  • предельный показатель температуры;
  • термоустойчивость;
  • влагостойкость;
  • коэффициент напряжения (связан с приложенным напряжением).

Сферы применения резисторов

Изделия применяется в электронике и радиоэлектронике. Позволяют ограничить электрический ток в электроцепи. Если резистор в электрической цепи подобран правильно, то достичь нужного показателя довольно легко. Если напряжение стабильное, то чем выше напряжение, тем ниже сила тока на выходе.

Таким образом, резисторы имеют цель преобразовать напряжение в электрический ток, а ток — в напряжение. В устройствах, предназначенных для измерения разных величин, резисторы делят напряжение, а также снижают или устраняют помехи радиохарактера.

Отображение в схемах

схема электроцепей резисторов

Если рассмотреть схемы электроцепей, то в российских и европейских вариантах будут похожие изображения — прямоугольник 4х10 миллиметров. А для обозначения показателей сопротивления используется отдельные знаки.

Принцип работы резистора

Что такое резистор, уже было рассмотрено выше. А как они функционируют?

Их работу полностью регулирует закон Ома. То есть, напряжение напрямую связано с величиной тока и показателями напряжения. Использование различных деталей дают возможность изменить указанные показатели до необходимой величины. Причина этого в том, что ток, двигаясь по цепи и попадая в резистор, снижает свою активность и продвигается медленнее далее по электрической цепи. Это и есть их принцип.

Читайте также:
Правила расчёта глубины заложения канализации: требования СНиП, критические точки, работа с высоким УГВ и разной глубиной промерзания грунта

схема работы резисторов

Резистор в цепи может быть подсоединен несколькими способами. Используется параллельное и последовательное подключение. Но зачастую их компонуют вместе и получают смешанный способ соединения.

Маркировка: обозначение

Для подавляющего большинства элементной базы на радиозаводах прибегают к специальной маркировке с определенной расцветкой, но иногда берут и цифровые и буквенные обозначения. К примеру, у SMD резистивных элементов исключительно буквенная.

Цветовые маркировки представляют собой 4…6 полосок разных цветов, которую несут определенные сведения. Первые 2 цифры являются обозначением номинального сопротивления, а 3-е, на которое множатся первые 2, в итоге демонстрируют общую величину сопротивления. 4-я свидетельствует о классе точности резистора. Если полосок больше, то изменяется исключительно 1-й показатель на одну цифру.

Маркировка резисторов

Типы соединения резисторов

При монтаже печатных плат используются следующие виды подключений резистивных элементов:

  • смешанное;
  • параллельное;
  • последовательное.

Последовательное соединение

Для подключений последовательного типа контакт резистора необходимо припаивать с началом иного и дальше по цепочке. Таким образом, элементы будут соединены между собой в единую цепь и будут пропускать общий ток. Все подключенные устройства будут оказывать влияние на протекающий ток, и показывать суммарное резистивное сопротивление.

Параллельное соединение

При подключении параллельного типа элементы должны подходить к одной единой точке на одном из контактов в начале и в ином в конце. В такой ситуации через каждый резисторный элемент будет протекать свой ток, что обозначает снижение сопротивления.

Смешанное соединение

При смешанных соединениях происходит объединение обоих ранее описанных вариантов, а расчеты общего сопротивления осуществляют, разбивая электросхемы на элементарные составные части.

Шумы и способы их уменьшения

Индивидуальные шумы у резисторов имеют в своем составе шумы: тепловые и токовые. Теплового характера шумы провоцируются движениями электронов в токопроводящих слоях, повышаются при повышениях температуры у детали и общей наружной температуры. При прохождении тока будут сгенерированы шумы токового характера. Такие шумы, у которых уровень выше, чем у тепловых, как правило, ярко выражены в непроволочных резистивных элементах.

Варианты устранения шумов:

  • Использование в электрических схемах резистивных элементов, у которых шумовая составляющая мала, за счет использования специальных технологий производственного цикла.
  • Резистивные элементы переменного типа имеют шумы выше, чем постоянного. Следовательно, в схемах пытаются максимально применять резисторы с переменными сопротивлениями с минимальными номиналами или избегать их использование совсем.
  • Использование резистивных элементов с большими мощностями, чем нужно согласно, предварительных расчетов.
  • Принудительные системы охлаждения резисторов за счет монтажа специальных вентиляторов.

Номиналы

У резистивных элементов четко прописаны их номинальные значения, которые обычно фиксируются с показателями порядка 1…10. При их использовании следует учитывать допустимые отклонения, именно потому компании-производители делают модели с заданным «шагом». Такие изменения при 10,0% отклонениях обычно составляют: 100,0, 120,0, 150,0, 180,0, 220,0 и т.д. Полупроводниковые элементы имеют свои отличия по своим параметрам характеру сборки и т.д.

Что такое мощность

Под номинальной мощностью резистивного элемента понимают максимум энергии, которую сможет рассеивать при рабочей нагрузке без рисков перегрева. Номинальную мощность резисторов определяют для заданного уровня температур в окружающей среде на улице. Важно знать, что обычно объем энергии, которую резистивный элемент сможет рассеивать без повреждений, имеет прямую зависимость от конкретных условий применения и, соответственно, не будет на уровне номинальной мощности.

Как проверить соединение

Визуальные осмотры. Все типы резисторов требуют контроля. Любые ремонтные процедуры начинают с внешних осмотров плат. Необходимо без использования измерительной техники осмотреть все узлы и механизмы электротехники. При выявлении пожелтений, почерневших частей и узлов со следами гари — обращать на это особое внимание.

При подобных осмотрах можно использовать увеличительные стекла или микроскопы. Поврежденные элементы могут свидетельствовать, как о локальных проблемах, так и о глобальных поломках, свидетельствующих, что функция резистора утрачена. При осмотре на наличие визуальных дефектов нелишним будет проверить наличие необычных или неприятных запахов (от кофе, горелой резины и т.д.).

Проверка исправности осуществляется при помощи специальных приборов. Для чего резистор исследуют тестером или «прозвонкой». Следует сказать, что при помощи «прозвонки» проверяются только резистивные элементы с сопротивлениями порядка 1…10 кОм, а элементы свыше 100,0 кОм лучше всего проверять тестером.

Специальные индикаторы звукового типа подобную проверку осуществляют лучше, чем светодиоды. Характер частоты писков дает возможность понять о работоспособности электроцепи, но, по мнению экспертов, лучше всего применять измерительную технику, такую как мультиметры и омметры.

«Авиэлси» — компания, профиль которой — профессиональные решения в автоматизации и электротехнике. Мы готовы выполнить любую схему грамотно. По всем вопросам по ремонту и обслуживанию обращайтесь к консультантам нашего сайта. Можно сделать заявку прямо сейчас, используя любую удобную форму обратной связи. Наши специалисты оперативно свяжутся с вами, чтобы уточнить все нюансы.

Что такое резистор и для чего он нужен в электрической цепи

Один самых часто используемых элементов в электронике – это резистор. Простым языком его называют «сопротивление». С его помощью можно ограничивать ток или измерять его, делить напряжение, создавать цепи обратной связи. Без сопротивлений не обходится ни одна схема. В этой статьи мы расскажем о том, что такое резистор, какой у него принцип работы, а также для чего нужен этот элемент электрической цепи.

Читайте также:
Проекты трехэтажных домов: каталог проектов трехэтажных домов

Определение

Резистор происходит от английского «resistor» и от латинского «resisto», что в переводе на русский язык звучит как «сопротивляюсь». В русскоязычной литературе наравне со словом «резистор» используют слово «сопротивление». Из названия ясна основная задача этого элемента – оказывать сопротивление электрическому току.

Он относится к группе пассивных элементов, потому что в результате его работы ток может только понижаться, то есть в отличие от активных элементов – пассивные сами по себе не могут усиливать сигнал. Что из второго закона Кирхгофа и закона Ома значит, что при протекании тока на резисторе падает напряжение, величина которого равна величине протекающего тока, умноженного на величину сопротивления. Ниже вы видите, как обозначается сопротивление на схеме:

Обозначение сопротивления по ГОСТ

Условное обозначение на схеме легко запомнить – это прямоугольник, по ГОСТ 2.728-74 его размеры равны 4х10 мм. Существуют варианты обозначений для резисторов разной мощности рассеивания.

Обозначение резисторов разных по мощности

Классификация резисторов происходит по ряду критериев. Если говорить о дискретных компонентах, то по методу монтажа их делят на:

Аксиальное и радиальное расположение выводов

  • Выводные. Используются для монтажа сквозь печатную плату. У таких элементов есть выводы, расположенные радиально или аксиально. В народе выводы называют ножками. Этот вид резисторов активно использовался во всех старых устройствах (20 и боле лет назад) – старых телевизорах, приёмниках, в общем везде, и сейчас используется в простых устройствах, а также там, где использование SMD компонентов по какой-то причине затруднено либо невозможно.
  • SMD. Это элементы, у которых нет ножек. Выводы для подключения расположены на поверхности корпуса, незначительно выступая над ней. Они монтируются непосредственно на поверхность печатной платы. Преимуществом таких резисторов является простота и дешевизна сборки на автоматизированных линиях, экономия места на печатной плате.

Внешний вид элементов двух типов вы видите на рисунке ниже:

Внешний вид сопротивления

Мы уже знаем, как выглядит этот компонент, теперь следует узнать о классификации по технологии изготовления. Выводные резисторы бывают:

  • Проволочными. В качестве резистивного компонента используют проволоку, намотанную на сердечнике, для снижения паразитной индуктивности используют бифилярную намотку. Проволоку выбирают из металла с низким температурным коэффициентом сопротивления и низким удельным сопротивлением.
  • Металлопленочные и композитные. Как можно догадаться, здесь в качестве резистивного элемента используют пленки из металлического сплава.

Так как резистор состоит из резистивного материала, в роли последнего может выступать проволока или плёнка с высоким удельным сопротивлением. Что это такое? Такие материалы как:

  • манганин;
  • константан;
  • нихром;
  • никелин;
  • металлодиэлектрики;
  • оксиды металлов;
  • углерод и прочие.

SMD или чип-резисторы бывают тонкопленочными и толстопленочными, в качестве резистивного материала используют:

Материал Особенности, где используется
Никель-хром (нихром, NiCr) в тонкоплёночных, которые устойчивы к высокой влажности (moisture-resistant)
Нитрид дитантала (Ta2N). TCR составляет 25 ppm/0С (-55…+1250С);
Диоксид рутения (RuO2) в толстоплёночных
Рутенит свинца (Pb2Ru2O6) в толстоплёночных
Рутенит висмута (Bi2Ru2O7) в толстоплёночных
Диоксиды рутения, легированные ванадием (Ru0,8V0,2O2, Ru0,9V0,1O2, Ru0,67V0,33O2)
Оксид свинца (PbO)
Висмут иридий (Bi2Ir2O7)
Сплав никеля В низкоомных (0,03…10 Ом) тонкоплёночных изделиях

На рисунке ниже изображено, из чего состоит резистор:

Конструкция резистора

По конструкции различают:

  • Постоянные. У них два вывода, а сопротивление вы изменять не можете – оно постоянно.
  • Переменные. Это потенциометры и подстроечные резисторы, принцип действия которых основан на перемещении скользящего контакта (бегунка) по резистивному слою.
  • Нелинейные. Сопротивление компонентов этого типа изменяется под воздействием температуры (терморезисторы), светового излучения (фоторезисторы), напряжения (варисторы) и других величин.

А также по назначению – общего и специального. Последние подразделяются на:

  • Высокоомные (диапазон сопротивлений десятки МОм — единицы ТОм, при рабочих напряжениях до 400В).
  • Высоковольтные (рассчитаны на работу в цепях с напряжением до десятков кВ).
  • Высокочастотные (особенностью работы на высокой частоте является требование к низким собственным индуктивностям и ёмкостям. Такие изделия могут работать в цепях с частотой сигнала в сотни МГц).
  • Прецизионные и сверхпрецизионные (это изделия с высоким классом точности. У них допуск по отклонению от номинального сопротивления 0,001 — 1 %, в то время как у обычных допуск может быть и 5% и 10% и больше).

Принцип работы

Резистор устанавливается в электрической цепи для ограничения тока, протекающего через цепь. Величина напряжения, которая на нем упадет, рассчитывается просто – по закону Ома:

U=IR

Падением напряжения называется то количество Вольт, которые появляются на выводах резистора, когда через него протекает ток. Соответственно, если на резисторе у нас упало напряжение, и через него протекает ток – значит на нём выделяется в тепло определенная мощность. В физике есть известная всем формула для нахождения мощности:

P=UI

Или для ускорения расчетов иногда удобно пользоваться формулой мощности через сопротивление:

P=U 2 /R=I 2 R

Как работает резистор? У каждого проводника есть определенная внутренняя структура. При протекании электрического тока электроны (носители зарядов) сталкиваются с различными неоднородностями структуры вещества и теряют энергию, она то и выделяется в виде тепла. Если вам сложно понять, то принцип работы сопротивления простыми словами можно сказать так:

Читайте также:
Отопление в бане: выбор оптимального варианта

Это величина, которая показывает насколько сложно протекать электрическому току через вещество. Она зависит от самого вещества – его удельного сопротивления.

Где: р – удельное сопротивление, l – длина проводника, S – площадь поперечного сечения.

Основные характеристики

Чтобы правильно выбрать резистор важно знать, на какие характеристики нужно смотреть при выборе. К его основным параметрам относится:

  1. Номинальное сопротивление.
  2. Максимальная рассеиваемая мощность.
  3. Допуск или класс точности. От него зависит, насколько процентов сопротивление деталей из этого класса может отличаться от заявленного.

В большинстве случае этих сведений достаточно. Новички часто забывают о допустимой мощности резистора, и они у них перегорают. Вы можете рассчитать сколько Ватт выделяется на резисторе по формуле, указанной в предыдущем разделе статьи. Покупайте резисторы с запасом по мощности в 20-30%, больше – лучше, меньше – не нужно!

Где и для чего применяется

Мы уже рассмотрели, что резистор предназначен для ограничения тока в цепи, теперь мы рассмотрим несколько практических примеров, где используется резистор в электротехнике.

Первая область применения — ограничение тока, например, для питания светодиодов. Принцип действия и расчета такой цепи заключается в том, что из напряжения источника питания вычитают номинальное рабочее напряжение светодиода, сумму делят на номинальный (или желаемый) ток через светодиод. В результате вы получаете номинал ограничительного сопротивления.

Схема включения светодиода

Второе — это делитель напряжения. Здесь выходное напряжение рассчитывают по формуле:

Делитель

Также резистор нашел применение для задания тока транзисторам. В сущности, та же схема ограничителя, рассмотренная выше.

Схемы включения транзистора

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Мы рассмотрели, какие бывают резисторы, их назначение и принцип работы. Это важный элемент, с которого следует начать изучение электротехники. Для расчетов цепей с ним используют закон Ома и активной мощности, а в высокочастотных цепях учитывают и реактивные параметры – паразитную ёмкость и индуктивность. Надеемся, предоставленная информация была для вас полезной и интересной!

Что такое резистор и для чего он нужен?

Резисторы относятся к наиболее широко используемым в электронике элементам. Это название давно вышло из узких рамок терминологии радиолюбителей. И для каждого, кто хоть немного интересуется электроникой, термин не должен вызывать непонимание.

raznie-rezistori

Что такое резистор

Наиболее простое определение выглядит так: резистор — это элемент электрической цепи, оказывающий сопротивление протекающему через него току. Название элемента происходит от латинского слова «resisto» — «сопротивляюсь», радиолюбители эту деталь часто так и называют — сопротивление.

Рассмотрим, что такое резисторы, для чего нужны резисторы. Ответы на эти вопросы подразумевают знакомство с физическим смыслом основных понятий электротехники.

Для разъяснения принципа работы резистора можно использовать аналогию с водопроводными трубами. Если каким-либо образом затруднить протекание воды в трубе (например, уменьшив ее диаметр), произойдет повышение внутреннего давления. Убирая преграду, мы снижаем давление. В электротехнике этому давлению соответствует напряжение — затрудняя протекание электрического тока, мы повышаем напряжение в цепи, снижая сопротивление, понижаем и напряжение.

Изменяя диаметр трубы, можно менять скорость потока воды, в электрических цепях путем изменения сопротивления можно регулировать силу тока. Величина сопротивления обратно пропорциональна проводимости элемента.

Свойства резистивных элементов можно использовать в следующих целях:

  • преобразование силы тока в напряжение и наоборот;
  • ограничение протекающего тока с получением его заданной величины;
  • создание делителей напряжения (например, в измерительных приборах);
  • решение других специальных задач (например, уменьшение радиопомех).

Пояснить, что такое резистор и для чего он нужен, можно на следующем примере. Свечение знакомого всем светодиода происходит при малой силе тока, но его собственное сопротивление настолько мало, что если светодиод поместить в цепь напрямую, то даже при напряжении 5 В текущий через него ток превысит допустимые параметры детали. От такой нагрузки светодиод сразу выйдет из строя. Поэтому в схему включают резистор, назначение которого в данном случае — ограничение тока заданным значением.

Все резистивные элементы относятся к пассивным компонентам электрических цепей, в отличие от активных они не отдают энергию в систему, а лишь потребляют ее.

Разобравшись, что такое резисторы, необходимо рассмотреть их виды, обозначение и маркировку.

Виды резисторов

Виды резисторов можно разбить на следующие категории:

  1. Нерегулируемые (постоянные) — проволочные, композитные, пленочные, угольные и др.
  2. Регулируемые (переменные и подстроечные). Подстроечные резисторы предназначены для настройки электрических цепей. Элементы с переменным сопротивлением (потенциометры) применяются для регулировки уровней сигнала.

Отдельную группу представляют полупроводниковые резистивные элементы (терморезисторы, фоторезисторы, варисторы и пр.)

Характеристики резисторов определяются их назначением и задаются при изготовлении. Среди ключевых параметров:

  1. Номинальное сопротивление. Это главная характеристика элемента, измеряется в омах (Ом, кОм, МОм).
  2. Допустимое отклонение в процентах от указанного номинального сопротивления. Означает возможный разброс показателя, определяемый технологией изготовления.
  3. Рассеиваемая мощность — предельная мощность, которую резистор может рассеивать при долговременной нагрузке.
  4. Температурный коэффициент сопротивления — величина, показывающая относительное изменение сопротивления резистора при изменении температуры на 1°С.
  5. Предельное рабочее напряжение (электрическая прочность). Это максимальное напряжение, при котором деталь сохраняет заявленные параметры.
  6. Шумовая характеристика — степень вносимых резистором искажений в сигнал.
  7. Влагостойкость и термостойкость — максимальные значения влажности и температуры, превышение которых может привести к выходу детали из строя.
  8. Коэффициент напряжения. Величина, учитывающая зависимость сопротивления от приложенного напряжения.
Читайте также:
Потрясающий лофт-проект частных апартаментов в Швеции

Читайте также: Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

raznie rezistori

Применение резисторов в области сверхвысоких частот придает важность дополнительным характеристикам: паразитной емкости и индуктивности.

Полупроводниковые резисторы

Это полупроводниковые приборы с двумя выводами, обладающие зависимостью электрического сопротивления от параметров среды — температуры, освещенности, напряжения и др. Для изготовления таких деталей используют полупроводниковые материалы, легированные примесями, тип которых определяет зависимость проводимости от внешнего воздействия.

Существуют следующие типы полупроводниковых резистивных элементов:

  1. Линейный резистор. Изготовленный из слаболегированного материала, этот элемент имеет малую зависимость сопротивления от внешнего воздействия в широком диапазоне напряжений и токов, чаще всего он применяется в производстве интегральных микросхем.
  2. Варистор — элемент, сопротивление которого зависит от напряженности электрического поля. Такое свойство варистора определяет сферу его применения: для стабилизации и регулирования электрических параметров устройств, для защиты от перенапряжения, в других целях.
  3. Терморезистор. Эта разновидность нелинейных резистивных элементов обладает способностью изменять свое сопротивление в зависимости от температуры. Существует два типа терморезисторов: термистор, сопротивление которого падает с ростом температуры, и позистор, чье сопротивление растет вместе с температурой. Терморезисторы применяются там, где важен постоянный контроль над температурным процессом.
  4. Фоторезистор. Сопротивление этого прибора меняется под воздействием светового потока и не зависит от приложенного напряжения. При изготовлении используется свинец и кадмий, в ряде стран это послужило поводом для отказа от применения этих деталей по экологическим соображениям. Сегодня фоторезисторы уступают по востребованности фотодиодам и фототранзисторам, применяемым в аналогичных узлах.
  5. Тензорезистор. Этот элемент устроен так, что способен менять свое сопротивление в зависимости от внешнего механического воздействия (деформации). Используется в узлах, преобразующих механическое воздействие в электрические сигналы.

vidi rezistorov

Такие полупроводниковые элементы, как линейные резисторы и варисторы, характеризуются слабой степенью зависимости от внешних факторов. Для тензорезисторов, терморезисторов и фоторезисторов зависимость характеристик от воздействия является сильной.

Полупроводниковые резисторы на схеме обозначаются интуитивно понятными символами.

Резистор в цепи

На российских схемах элементы с постоянным сопротивлением принято обозначать в виде белого прямоугольника, иногда с буквой R над ним. На зарубежных схемах можно встретить обозначение резистора в виде значка «зигзаг» с аналогичной буквой R сверху. Если для работы прибора важен какой-либо параметр детали, на схеме принято его указывать.

Читайте также: Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность

Мощность может обозначаться полосками на прямоугольнике:

  • 2 Вт — 2 вертикальные черты;
  • 1 Вт — 1 вертикальная черта;
  • 0,5 Вт — 1 продольная линия;
  • 0,25 Вт — одна косая линия;
  • 0,125 Вт — две косые линии.

Допустимо указание мощности на схеме римскими цифрами.

Обозначение переменных резисторов отличается наличием дополнительной над прямоугольником линии со стрелкой, символизирующей возможность регулировки, цифрами может быть указана нумерация выводов.

Полупроводниковые резисторы обозначаются тем же белым прямоугольником, но перечеркнутым косой линией (кроме фоторезисторов) с буквенным указанием типа управляющего воздействия (U — для варистора, P — для тензорезистора, t — для терморезистора). Фоторезистор обозначается прямоугольником в круге, к которому направлены две стрелки, символизирующие свет.

Параметры резистора не зависят от частоты протекающего тока, это означает, что данный элемент одинаково функционирует в цепях постоянного и переменного тока (как низкой, так и высокой частоты). Исключением являются проволочные резисторы, которым свойственна индуктивность и возможность потери энергии вследствие излучения на высоких и сверхвысоких частотах.

В зависимости от требований к свойствам электрической цепи резисторы могут соединяться параллельно и последовательно. Формулы для расчета общего сопротивления при разном соединении цепей существенно отличаются. При последовательном соединении итоговое сопротивление равно простой сумме значений входящих в цепь элементов: R = R1 + R2 +… + Rn.

При параллельном соединении для вычисления суммарного сопротивления необходимо сложить величины, обратные значениям элементов. При этом получится значение, также обратное итоговому: 1/R = 1/R1+ 1/R2 + … 1/Rn.

Общее сопротивление параллельно соединенных резисторов будет ниже наименьшего из них.

Номиналы

Существуют стандартные значения сопротивлений для резистивных элементов, называемые «номинальным рядом резисторов». В основу подхода при создании этого ряда положено следующее соображение: шаг между значениями должен перекрывать допустимую величину отклонения (погрешность). Пример — если номинал элемента 100 Ом, а допустимое отклонение 10%, то следующее значение в ряду будет 120 Ом. Такой шаг позволяет избежать лишних значений, поскольку соседние номиналы вместе с разбросом погрешности практически перекрывают весь диапазон значений между ними.

Выпускаемые резисторы объединяются в серии, отличающиеся по допускам. Для каждой серии составлен свой номинальный ряд.

Отличия между сериями:

  • Е 6 — допуск 20%;
  • E 12 — допуск 10%;
  • E 24 — допуск 5% (бывает 2%);
  • Е 48 — допуск 2%;
  • E 96 — допуск 1%;
  • E 192 — допуск 0,5% (бывает 0,25%, 0,1% и ниже).

Самая широко распространенная серия Е 24 включает в себя 24 номинала сопротивлений.

Маркировка

Размер резистивного элемента напрямую связан с его мощностью рассеивания, чем она выше, тем крупнее габариты детали. Если на схемах легко указать любое численное значение, то маркировка изделий бывает затруднена. Тенденция миниатюризации в производстве электроники вызывает необходимость использования элементов все меньших размеров, что повышает сложность как нанесения информации на корпус, так и ее прочтения.

Читайте также:
Рецепт Рябина обыкновенная моченая

Для облегчения идентификации резисторов в российской промышленности применяют буквенно-цифровую маркировку. Сопротивление обозначается так: цифрами указывают номинал, а букву ставят либо за цифрами (в случае десятичных значений), либо перед ними (для сотен). Если номинал менее 999 Ом, то число наносится без буквы (или могут стоять буквы R либо Е). Если же значение указано в кОм, то за числом ставится буква К, букве М соответствует значение в МОм.

Номиналы американских резисторов обозначаются тремя цифрами. Первые две из них предполагают номинал, третья — количество нулей (десятков), добавляемых к значению.

При роботизированном производстве электронных узлов нанесенные символы нередко оказываются на той стороне детали, которая обращена к плате, это делает прочтение информации невозможным.

markirovka rezistora

Цветовая маркировка

Чтобы информация о параметрах детали оставалась читаемой с любой стороны, применяют цветовую маркировку, краска при этом наносится кольцевыми полосами. Каждому цвету соответствует свое численное значение. Полосы на деталях размещаются ближе к одному из выводов и читаются от него слева направо. Если из-за малого размера детали невозможно сместить цветовую маркировку к одному выводу, то первая полоса делается шириной в 2 раза больше, чем остальные.

Элементы с допустимой погрешностью в 20% обозначают тремя линиями, для погрешности 5-10% используют 4 линии. Самые точные резисторы обозначаются с помощью 5-6 линий, первые 2 из них соответствуют номиналу детали. Если полос 4, то третья говорит о десятичном множителе для первых двух полос, четвертая линия означает точность. Если полос 5, то третья из них — третий знак номинала, четвертая — степень показателя (количество нулей), а пятая — точность. Шестая линия означает температурный коэффициент сопротивления (ТКС).

В случае четырехполосной маркировки последними всегда идут золотая или серебряная полосы.

Все обозначения выглядят сложно, но умение быстро читать маркировку приходит с опытом.

Что такое резистор

Резистор (от латинского «resisto», что означает “сопротивляюсь”) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.

В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.

Содержание статьи

Для чего нужен резистор в электрической цепи

Для чего нужен резистор

Наглядный пример работы резистора

С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.

Закон Ома выражается формулой U = I*R, в которой:

  • U – напряжение, В;
  • I – сила тока, А;
  • R – сопротивление, Ом.

Также резисторы работают как:

  • преобразователи тока в напряжение и наоборот;
  • делители напряжения, это свойство применяется в измерительных аппаратах;
  • элементы для снижения или полного удаления радиопомех.

Основные характеристики резисторов

Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:

  • Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
  • Максимальная рассеиваемая мощность – предельная мощность, которую способен рассеивать элемент при долговременном использовании. На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
  • Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.

При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.

Способ монтажа

По технологии монтажа резисторы разделяют на выводные и SMD.

Выводные резисторы

Радиальный выводной резистор фото

Радиальный выводной резистор

Аксиальный выводной резистор фото

Аксиальный выводной резистор

Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.

Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.

Из чего состоит резистор проволочного типа

В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.

Чем отличается металлопленочный резистор от проволочного

У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.

SMD-резисторы

SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.

Читайте также:
Самодельная вешалка с плечиками для одежды

SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.

Из чего делают чип-резисторы

Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.

Виды резисторов по характеру изменения сопротивления

Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.

В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.

Что делают подстроечные резисторы

Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.

Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.

Типы резисторов по характеру вольтамперной характеристики

По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.

Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.

Виды резисторов по назначению

Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:

  • Высокочастотные. Для чего нужны такие резисторы в электроцепях: благодаря низким собственным емкостям и индуктивностям, высокочастотные резисторы могут применяться в схемах, в которых частота достигает сотни мегагерц, они выполняют в них функции балластных или оконечных нагрузок.
  • Высокоомные. Величина сопротивления находится в диапазоне от нескольких десятков МОм до ТОм, величина напряжения небольшая – до 400 В. Высокоомные элементы работают в ненагруженном состоянии, поэтому большая мощность им не нужна. Их мощность рассеивания не превышает 0,5 Вт. Высокоомные резисторы служат для ограничения тока в дозиметрах, приборах ночного видения и других приборах с малыми токами.
  • Прецизионные и сверхпрецизионные. Эти устройства имеют высокий класс точности: допустимое значение сопротивления составляет 1% от номинального и менее. Для сравнения: у обычных резисторов допустимый диапазон составляет 5% и более. Прецизионные устройства используются в основном в приборах измерения высокой точности.

Шумы резисторов и способы их уменьшения

Собственные шумы резистивных элементов состоят из тепловых и токовых шумов. Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды. При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.

Способы борьбы с шумами:

  • Применение в схеме типов резисторов, в которых шумы невелики, благодаря технологии изготовления.
  • Переменные резисторы шумят больше постоянных, поэтому в схеме стараются использовать элементы с переменным сопротивлением минимального номинала или не применять их вообще.
  • Использование резюков с бОльшей мощностью, чем требуется по технологии.
  • Принудительное охлаждение элемента путем установки поблизости вентилятора.

Обозначение резисторов на схеме

Обозначение по ГОСТ 2.728-74 Описание
Постоянный резистор без указания номинальной мощности рассеивания
Постоянный резистор номинальной мощностью рассеивания 0,05 Вт
Постоянный резистор номинальной мощностью рассеивания 0,125 Вт
Постоянный резистор номинальной мощностью рассеивания 0,25 Вт
Постоянный резистор номинальной мощностью рассеивания 0,5 Вт
Постоянный резистор номинальной мощностью рассеивания 1 Вт
Постоянный резистор номинальной мощностью рассеивания 2 Вт
Постоянный резистор номинальной мощностью рассеивания 5 Вт

Обозначение переменных, подстроечных и нелинейных резисторов на схемах:

Условное обозначение резистора на схеме – прямоугольник размерами 4х10 мм. На схемах значение сопротивления постоянного резюка менее кОма проставляется рядом с его условным обозначением числом без единицы измерения. При номинале от одного кОм до 999 кОм рядом с числом ставят букву «К», от одного МОм – букву «М». Характеристики резисторов указывают на их поверхности, для чего применяют буквенно-цифровой код или группу цветных полосок.

Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:

  • 25 Ом – 25 R;
  • 25 кОм – 25 K;
  • 25 МОм – 25 M.

Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:

  • 0,25 Ом – R 25;
  • 0,25 кОм – K 25;
  • 0,25 МОм – M 25.

Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:

  • 2,5 Ом – 2R5;
  • 2,5 кОм – 2K5;
  • 2,5 МОм – 2M5.
Читайте также:
Опасно ли разбить энергосберегающую лампу

Производители в силу несовершенства производственной технологии не в состоянии на 100% гарантировать соответствие заявленного значения сопротивления фактическому. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±5%, ±10%, ±20%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.

Резистор — что это такое и для чего нужен

Что такое резистор

Компоненты электрической цепи

В электрических цепях важную роль играет проводник. Для чего нужен резистор и что это такое стоит разобраться подробнее. Он способен поделить напряжение и ограничить ток, измерить его и создать цепь обратной связи. Основная задача маленькой детали создать необходимое сопротивление для электрического тока.

резисторы

Резисторы бывают различных цветов, форм и размеров

Что такое резистор

Резистор – это сопротивление. Он является пассивным элементом в цепи и способен только уменьшать ток. Происхождение названия идет от латинского «resisto», что дословно на русском языке означает «сопротивляюсь».

Предназначен проводник для того, чтобы преобразовывать напряжение в силу тока и наоборот, он поглощает часть энергии и ограничивает ток. Основное применение приходится на электрические и электронные устройства.

Справка! Соединение проводников может быть последовательным, параллельным или смешанным.

Также есть два вида полупроводников:

  • линейные, сопротивление у которых от тока и напряжения не зависит;
  • нелинейные, способные изменить сопротивление в зависимости от значений протекающего тока и напряжения.

Основным параметром резисторов является номинальное напряжение.

Как выглядит

Элементы могут быть проволочные и непроволочные. Последние отлично выполнят свою функцию в высокочастотной цепи, внешний вид и процесс их изготовления отличаются. Различают резисторы общего применения и специального. Первые не превышают 10 мегаом, а вторые способны работать под напряжением 600 вольт и выше. Внешним видом они тоже отличаются. На фото ниже легко увидеть разницу и понять, как выглядит резистор.

разные-резисторы

Разница во внешнем виде и размерах

Из чего состоит

Намотав проволоку на каркас из керамики или прессованного порошка получится проволочный резистор. При этом сама проволока должна быть из нихрома, константана или манганина. Так получится создать полупроводник с высоким удельным сопротивлением.

Непроволочные элементы изготовлены на основе диэлектрика из проводящих смесей и пленок. Разделяют тонкослойные и композиционные, но все они имеют повышенную точность и стабильность в работе.

Регулировочные и подстроечные элементы представляют собой кольцевую резистивную пластину по которой движется бегунок. Он скользит по кругу, меняя расстояние точек на резистивном слое, в результате сопротивление меняется. Следует понять, что же делает резистор для прибора.

Для чего используется

Для чего нужен резистор? При помощи этой детали в электрической цепи можно ограничить количество проводимого тока, в результате правильно подобранной детали легко получить необходимую величину. Чем выше сопротивление, тем ниже будет на выходе сила тока, при условии стабильного напряжения.

Как работают резисторы понять легко, они могут использоваться в качестве преобразователя напряжения в ток и наоборот, в измерительных аппаратах их применяют для деления напряжения, а также они могут понизить или полностью устранить радиопомехи.

Обозначение на схемах

В России и Европе резистор на схеме обозначаются прямоугольником, размерами 4*10мм. Для определения значений сопротивления есть условные обозначения. Постоянный элемент на схеме обозначается следующим образом:

postoyannie-rezistori

Обозночения постоянных элементов на схеме

Переменные, в том числе подстроечные, а также нелинейные следующим образом:

переменные-резисторы

Обозначения переменных проводников

Важно! Всегда есть погрешность в заявленном производителем сопротивлении, она обозначается с помощью букв и цифр в процентном выражении.

Принцип работы резистора

В основе работы проводников лежит закон Ома, согласно которому напряжение зависит от величины тока и напряжения. Различные номиналы деталей помогут изменить ток и напряжение на необходимую величину. Суть заключается в том, что ток, движущейся по цепи, попадает в деталь и снижает свое продвижение.

Пример схемы

Резисторы могут соединяться параллельно и последовательно, на схемах также часто встречаются смешанные варианты. На фото ниже можно увидеть отличия в обозначениях деталей на схемах.

otlichiya-rezistorov

Обозначения элементов на схемах

Типы резисторов

К типам резисторов общего применения относят постоянные, сопротивление которых невозможно изменить и переменные, когда допустимо его менять в пределах допустимых значений. Мощность рассеивания при этом будет в пределах 0,125-100 Вт, а сопротивление не превысит 10 мегаом.

Постоянные

Отличаются постоянные проводники наличием только двух выводов и постоянным сопротивлением. Поскольку этот вид предназначен только для уменьшения силы тока, то он отлично справляется со своей задачей в различных электрических приборах. Постоянные элементы делятся на общего и специального назначения.

Переменные

Переменные имеют три вывода, а на схеме можно увидеть пограничные значения рабочего режима. Поменять сопротивление поможет бегунок, который движется по резистивному слою. Во время движения сопротивление падает между средним и одним из боковых выводов, соответственно в другой стороне увеличивается. Переменные резисторы делятся на подстроечные и регулировочные.

Классификация резисторов

Резисторы отличаются не только возможностью регулировать сопротивление. Они могут изготавливаться из разных резистивных материалов, иметь различное количество контактов и иметь другие особенности.

Читайте также:
Принципы оформления кабинета в морском стиле

По типу резистивного материала

Элементы могут быть проволочными, непроволочными или металлофольговыми. Высокоомная проволока является признаком проволочного элемента, для ее изготовления используют такие сплавы, как нихром, константан или никелин. Пленки с повышенным удельным сопротивлением являются основой непроволочных элементов. В металлофольговых используется специальная фольга. Теперь выясним из чего состоят резисторы.

konstrukcia-rezistorov

Конструкция полупроводника

Непроволочные делятся на тонкослойные и композиционные, толщина первых измеряется в нанометрах, а вторых – в долях миллиметра. Тонкослойные делятся на:

  • металлоокисные;
  • металлизированные;
  • бороуглеродистые;
  • металлодиэлектрические;
  • углеродистые.

Композиционные в свою очередь подразделяются на объемные и пленочные. Последние могут быть с органическим или неорганическим диэлектриком. Чтобы понять есть ли полярность у резистора следует знать, что стороны у них идентичны.

По назначению сопротивления

Постоянные и переменные полупроводники также имеют некоторые различия в характеристиках. Постоянные делятся на проводники общего и специального назначения. Последние могут быть:

  • высокочастотными;
  • высоковольтными;
  • высокомегаомными;
  • прецизионными.

Такие детали используются в точных измерительных приборах, они выделяются особой стабильностью.

Переменные резисторы можно разделить на подстроечные и регулировочные. Последние могут быть с линейной или нелинейной функциональной характеристикой.

По количеству контактов

В зависимости от назначения резистора у него может быть один, два и более контактов. Сами контакты также отличаются, например, у SMD-резисторов это контактная площадка, у проволочных – особого состава проволока. Есть резисторы металлопленочные, с квантовыми точечными контактами, а в переменных они подвижные.

rezistor

Разное количество контактов на элементах

Другие

Отличаются резисторы формой и типом сопротивления, а также характером зависимости величины сопротивления от напряжения. Описание зависимости величины может быть линейной или нелинейной. Использование элемента простое, емкость указывается на корпусе, минус и плюс не отличаются.

Резисторы могут быть защищены от влаги или нет, корпус может быть лакированным, вакуумным, герметичным, впрессованным в пластик или компаундированным. Нелинейные подразделяются на:

  • варисторы;
  • магниторезисторы;
  • фоторезисторы;
  • позисторы;
  • тензорезисторы;
  • терморезисторы.

Все они выполняют свою определенную функцию, одни меняют сопротивление от температуры, другие от напряжения, третьи от лучистой энергии.

Основные характеристики и параметры резисторов

Характерны для полупроводников такие параметры, как номинальное значение сопротивления, его допустимое отклонение. Мощность рассеяния также определяется номинальным и допустимым значениями. Элементы различны по максимальному рабочему напряжению и коэффициентом температуры сопротивления, а также шумами.

Виды соединения резисторов

Различают три типа соединения резисторов:

  • параллельное;
  • последовательное;
  • смешанное.

Для последовательного соединения конец одного резистора нужно паять с началом другого и далее по цепочке. Так компоненты соединяются друг за другом и пропускают общий ток, проводник нужно правильно припаять. Количество таким образом соединенных проводников будет влиять на протекающий ток и оказывать общее сопротивление.

Параллельное соединение элементов отличается тем. Что все они сходятся в одной общей точке в начале и в другой точке в конце. В этом случае через каждый элемент течет свой ток, а значит сопротивление снижается. Смешанное соединение объединяет в себе оба предыдущих варианта, а расчет итогового сопротивления подсчитывают разбив схему на простые участки.

Какими могут быть номиналы резисторов

Номиналы резисторов четко определены и имеют показатели от нуля и до десяти. При этом всегда учитывается допустимое отклонение, а потому производители выпускают элементы с определенным шагом. Шагами при 10% отклонения будут: 100, 120, 150, 180, 220 и далее по схеме. Полупроводники отличаются разновидностью сборки, своими свойствами.

Как маркируются резисторы

В основном для таких элементов используется цветовая маркировка, но SMD-резисторы имеют буквенную. Цветовая включает от 4 до 6 полос, несущих определенную информацию. Две первые цифры покажут номинальное сопротивление, а третья число, на которое умножаются первые два, в результате получается величина сопротивления. Четвертая говорит о точности проводника. Если полос больше, то меняется только первый показатель на одну цифру.

cveta-rezistorov

Цветовое обозначение на элементах

Внимание! Первой полосой считается та, которая ближе других расположена к краю элемента.

Чем отличается резистор от реостата, транзистора

Реостат является электрическим аппаратом. Который способен регулировать ток и напряжение в электрической цепи. В общем это аналог переменного резистора. Он включает проводящий элемент и регулятор сопротивления. Влиять на изменение показателя можно плавно, а при желании это можно сделать ступенчато. В стандартизации реостатом называют резисторы переменные, регулировочные и подстроечные.

Транзистор является прибором для управления электрическим током. По сути он усиливает ток и может им управлять, а проводник регулирует сопротивление в сети. Внешне два элемента значительно отличаются друг от друга. Резистор имеет цилиндрическую форму и цветную окраску, а транзистор облачен в пластиковый или металлический квадратный корпус.

Важно! Резистор способен работать при любом токе, а транзистор только при постоянном.

Выводы: проводники имеют одинаковую функциональность, а у транзистора разную. Также транзистор – это полярный элемент, а резистор – неполярный. По этой причине перепутать два элемента можно только в том случае, если человек совершенно далек от электротехники и радиоэлектроники.

Резистор необходимый элемент во всех микросхемах современных электроприборах. Оказывая сопротивление в цепи, полупроводник делит или уменьшает напряжение, благодаря чему, различные приборы могут работать от сети. Сопротивление тока измеряется в Омах, а грамотный подбор полупроводника обеспечит продолжительную работу любого электроприбора. Так мы выяснили, что такое резистор и для чего он нужен, чем отличается от реостата и транзистора и как обозначается на схемах.

Читайте также:
Обследование зданий и сооружений

Что такое резистор и для чего он нужен?

При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.

Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.

Что такое резистор?

Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элемент применяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.

Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.

Применение

Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.

Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.

делитель напряжения на резисторах

Рис. 1. Пример использования резисторов в схеме делителя напряжения

Без резисторов не работает ни один электронный прибор.

Устройство и принцип работы

Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.

Устройство таких элементов можно понять из рисунка 2 ниже.

В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.

Строение резистора

Рис. 2. Строение резистора

Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.

Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.

Для непроволочных резисторов используются следующие резистивные материалы:

  • нихром;
  • манганин;
  • константан;
  • никелин;
  • оксиды металлов;
  • металлодиэлектрики;
  • углерод и другие материалы.

Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.

Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.

Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.

Рис. 3. Регулировочные резисторы Рис. 4. Подстроечные резисторы

Принцип действия.

Работа резистора основана на действии закона Ома: I = U/R , где I – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.

Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.

Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.

Принцип работы

Рис. 5. Принцип работы

Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.

Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:

  • изменения температуры (терморезисторы);
  • яркости света (фоторезисторы);
  • изменений напряжения (варисторы);
  • деформации (тензорезисторы);
  • напряжённости электрического поля (магниторезисторы);
  • от протекающего заряда (мемристоры).

За видом резистивного материала классификация может быть следующей:

Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.

Читайте также:
Потрясающий лофт-проект частных апартаментов в Швеции

В интегральных монокристаллических микросхемах методом трафаретной печати или способом напыления в вакууме создают встроенные интегральные резисторы.

По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:

  • прецизионные и сверхпрецизионные (высокоточные детали с допуском отклонений параметров от 0,001% до 1%);
  • высокоомные (от десятков МОм до нескольких Том);
  • высокочастотные, способные работать с частотами до сотен МГц;
  • высоковольтные, с рабочим напряжением, достигающим десятков кВ.

Можно классифицировать детали и по другим признакам, например по типу защиты от влаги или по способу монтажа: печатный либо навесной.

Номиналы резисторов

Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.

Компоненты ряда Е6 имеют допуск отклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 – ± 5%.

Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.

Маркировка

Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).

Цветовая маркировка

Рис. 8. Цветовая маркировка

Если на корпусе присутствует 3 кольца, то первые два обозначают величину сопротивления, третье – множитель, а допустимое отклонение составляет 20%.

Если на корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущем примере, а четвёртое кольцо указывает на величину отклонения.

Пять колец: первые 3 указывают величину сопротивления, на четвёртой позиции – множитель, а на пятой – допуск.

На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.

Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).

Таблица цветов

Рис. 9. Таблица цветов

В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.

Маркировка SMD-резисторов

Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.

Цифровая маркировка

Рис. 10. Цифровая маркировка

Код на рисунке расшифровывается так: номинальное сопротивление 120×10 6 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).

Обозначение на схемах

Традиционно резисторы на схемах обозначают в виде прямоугольника (по ГОСТ 2.728-74) или ломаной линии (рис. 12 — в основном на схема западного образца). В прямоугольнике иногда указывают мощность, используя для этого условные обозначения в виде вертикальных, косых или горизонтальных чёрточек (см. рисунок ниже):

Возле значка проставляют букву R и номинал резистора.

Обозначение на схемах

Рис. 12. Обозначение на схемах

В отличие от постоянных деталей, обозначение переменных резисторов имеет особенность: над прямоугольником добавляется стрелка, указывающая, что в конструкции детали есть скользящий контакт (бегунок).

Например, УГО потенциометра выгляди так:

Типы резисторов и их обозначения

Типы резисторов и их обозначения

Характеристики и параметры

Пределы границ сопротивлений для деталей общего назначения находятся в промежутке от 10 Ом до 10 МОм. Для таких компонентов номинальная мощность рассеивания составляет 0,125 – 100 Вт.

Сопротивление высокоомных деталей составляет порядка 10 13 Ом. Такие изделия применяются в измерительных устройствах, предназначенных для малых токов. Величины номинальных мощностей на корпусах таких компонентов могут не указываться. Рабочее напряжение от 100 до 300 В.

Класс высоковольтных деталей предназначен для работы под напряжением 10 – 35 кВ. Их сопротивление достигает 10 11 Ом.

Для высокочастотных резисторов важен номинал рабочей частоты. Они способны работать на частотах свыше 10 МГц. Высокочастотные токи сильно нагревают детали. При интенсивном охлаждении номинальные мощности таких компонентов достигают величин 5, 20, 50 кВт.

В точных измерительных и вычислительных устройствах, а также в релейных системах применяются прецизионные резисторы. Они обладают высокой стабильностью параметров. Мощность рассеивания у таких деталей не превышает 2 Вт, а номинальное сопротивление лежит в пределах 1 – 10 6 Ом.

Кроме основных характеристик иногда важно знать уровень напряжений шума, зависимость сопротивления реальных резисторов от нагревания (температурный коэффициент сопротивления) и некоторые другие.

Соединение резисторов

Сопротивления можно соединять двумя способами – параллельно либо последовательно.

  • Для параллельного соединения 2 резисторов имеем: R = (R1* R2) / (R1+R2).
  • При последовательном соединении 2 резисторов – общее сопротивление определяем по формуле: R = R1 + R2.

Для расчета последовательно и параллельно соединенных резисторов удобно воспользоваться нашими калькуляторами:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: