Расход теплоносителя в системе отопления калькулятор

Выбор циркуляционного насоса для системы отопления. Часть 2

Циркуляционный насос выбирается по двум основным характеристикам:

G* – расходу, выраженному в м 3 /час;

H – напору, выраженному в м.

*Для записи расхода теплоносителя производители насосного оборудования пользуются буквой Q. Производители запорной арматуры, например, Данфосс для расчета расхода пользуется буквой G. В отечественной практике также используется эта буква. Поэтому в рамках объяснений этой статьи мы также будем пользоваться буквой G, Но в других статьях, подойдя непосредственно к разбору графика работы насоса, для расхода мы все же будем использовать букву Q.

Определение расхода (G, м 3 /час) теплоносителя при выборе насоса

Отправной точкой для подбора насоса служит количество тепла, которое теряет дом. Как это узнать? Для этого нужно сделать расчет теплопотерь.

Это сложный инженерный расчет, предполагающий знание многих составляющих. Поэтому в рамках этой статьи мы опустим это объяснение, а за основу количества теплопотерь возьмем одну из распространенных (но далеко не точных) методик, которой пользуются многие монтажные фирмы.

Ее суть заключается в некоем среднем показателе потерь на 1 м 2 . Эта величина условна и составляет 100 Вт/м 2 (если дом или комната имеют неутепленные кирпичные стены, да еще недостаточной толщины, количество тепла, теряемого помещением, будет значительно больше. И наоборот, если ограждающие конструкции дома сделаны с применением современных материалов и имеют хорошую теплоизоляцию, потери тепла будут снижены и могут составлять 90 или 80 Вт/м 2 ).

Итак, предположим, что вы имеете дом площадью 120 или 200 м 2 . Тогда условленное нами количество теплопотерь для всего дома будет составлять:

120 * 100 = 12000 Вт или 12 кВт.

Какое это имеет отношение к насосу? Самое прямое.

Процесс теплопотерь в доме происходит постоянно, а значит и процесс нагревания помещений (компенсация теплопотерь) должен идти постоянно.

Представьте, что у вас нет насоса, нет трубопроводов. Как бы вы решили эту задачу?

Чтобы компенсировать теплопотери вам пришлось бы сжигать какой-то вид топлива в отапливаемом помещении, например, дрова, что в принципе тысячелетиями люди и делали.

Но вы решили отказаться от дров и использовать для обогревания дома воду. Что вам пришлось бы делать? Вам пришлось бы брать ведро( -а), наливать туда воду и греть ее на костре или газовой плите до температуры кипения. После этого брать ведра и нести их в комнату, где вода отдавала бы свое тепло помещению. Затем брать другие ведра с водой и снова ставить их на костер или газовую плиту для нагревания воды, а затем нести их в комнату взамен первых. И так до бесконечности.

Сегодня за вас эту работу выполняет насос. Он заставляет воду двигаться к устройству, где она нагревается (котел), а затем для передачи сохраненного в воде тепла по трубопроводам направляет ее к отопительным приборам для компенсации теплопотерь в помещении.

Возникает вопрос: сколько нужно воды в еденицу времени, нагретой до заданной температуры, чтобы компенсировать теплопотери дома?

Как это посчитать?

Для этого нужно знать несколько величин:

  • количество тепла, которое необходимо для компенсации тепловых потерь (в этой статье за основу мы взяли дом площадью 120 м 2 с теплопотерями 12000 Вт)
  • удельная теплоемкость воды равная 4200 Дж/кг * о С;
  • разница между начальной температурой t 1 (температура обратки) и конечной температурой t 2 (температурой подачи), до которой нагревается теплоноситель (эта разница обозначается как ΔT и в теплотехнике для расчета систем радиаторного отопления определяется в 15 – 20 о С).
Читайте также:
Особенности теплоизоляционной штукатурки для внутренних работ

Эти значения нужно подставить в формулу:

G = Q / (c * (t 2 – t 1 )) , где

G – требуемый расход воды в системе отопления, кг/сек. (Этот параметр должен обеспечивать насос. Если купить насос с меньшим расходом, то он не сможет дать количество воды необходимое для компенсации тепловых потерь; если взять насос с завышенным расходом, это приведет к снижению его КПД, перерасходу электроэнергии и большим начальным затратам) ;

Q – количество тепла Вт, необходимое для компенсации теплопотерь;

t 2 – температура конечная, до которой нужно нагреть воду (обычно 75, 80 или 90 о С);

t 1 – температура начальная (температура теплоносителя, остывшего на 15 – 20 о С);

c – удельная теплоемкость воды, равная 4200 Дж/кг * о С .

Подставляем известные значения в формулу и получаем:

G = 12000 / 4200 * (80 – 60) = 0,143 кг/с

Такой расход теплоносителя в течение секунды необходим для компенсации тепловых потерь вашего дома площадью 120 м 2 .

На практике пользуются расходом воды, перемещенным в течение 1 часа. В этом случае формула, пройдя некоторые преобразования принимает следующий вид:

G = 0,86 * Q / t 2 – t 1 ;

G = 0,86 * Q / ΔT , где

ΔT – разность температур между подачей и обраткой (как мы уже увидели выше, ΔT – величина известная, закладываемая изначально в расчет).

Итак, какими бы сложными, на первый взгляд, не показались объяснения по подбору насоса, учитывая такую важную величину, как расход, сам расчет и, следовательно, подбор по этому параметру довольно прост.

Все сводится к подстановке известных значений в простую формулу. Эту формулу можно “вбить” в программе Excel и пользоваться этим файлом, как быстрым калькулятором.

Потренируемся!

Задача: нужно подсчитать расход теплоносителя для дома площадью 490 м 2 .

Решение:

Q (количество теплопотерь) = 490 * 100 = 49000 Вт = 49 кВт.

Проектный температурный режим между подачей и обраткой закладываем следующий: температура подачи – 80 о С, температура обратки – 60 о С (по-другому запись делается как 80/60 о С).

Следовательно, ΔT = 80 – 60 = 20 о С .

Теперь все значения подставляем в формулу:

G = 0,86 * Q / ΔT = 0,86 * 49 / 20 = 2,11 м 3 /час.

Как всем этим пользоваться непосредственно при выборе насоса, вы узнаете в заключительной части этой серии статей. А сейчас поговорим о второй важной характеристике – напоре. Читать далее

Калькулятор расчета водяного теплого пола

О нлайн калькулятор водяного теплого пола предназначен для расчета основных тепловых и гидравлических параметров системы, расчета диаметра и длины трубы. Калькулятор предоставляет возможность осуществить расчет теплого пола, реализованного «мокрым» способом с обустройством монолитного пола из цементно-песчаного раствора или бетона, а также с реализацией «сухим» методом, с использованием тепло-распределяющих пластин. Устройство системы ТП «сухим» методом предпочтительно для деревянных полов и перекрытий.

Расчет теплого пола

Т епловые потоки, направленные снизу-вверх, являются наиболее предпочтительными и комфортными для человеческого восприятия. Именно поэтому обогрев помещений теплыми полами становится наиболее популярным решением по сравнению с настенными источниками тепла. Нагревательные элементы такой системы не занимают дополнительного места в отличие от настенных радиаторов.

П равильно спроектированные и реализованные системы теплого пола являются современным и комфортным источником обогрева помещений. Использование современных и качественных материалов, а также правильных расчетов, позволяет создать эффективную и надежную систему отопления со сроком службы не менее 50 лет.

Читайте также:
Подключение сварочного аппарата: особенности, возможные проблемы

С истема теплого пола может выступать единственным источником обогрева помещения только в регионах с теплым климатом и с использованием энерго-эффективных материалов. При недостаточном тепловом потоке обязательно применение дополнительных источников тепла.

П олученные расчеты будут особенно полезны тем, кто планирует реализовать систему отопления теплого пола своими руками в частном доме.

Общие сведения по результатам расчетов

  • О бщий тепловой поток – Кол-во выделяемого тепла в помещение. Если тепловой поток меньше тепловых потерь помещения, необходимы дополнительные источники тепла, например, такие как настенные радиаторы.
  • Т епловой поток по направлению вверх – Кол-во выделяемого тепла в помещение с 1 квадратного метра площади по направлению вверх.
  • Т епловой поток по направлению вниз – Кол-во “теряемого” тепла и не участвующего в обогреве помещения. Для уменьшения данного параметра необходимо выбирать максимально эффективную теплоизоляцию под трубами ТП* (*теплого пола).
  • С уммарный удельный тепловой поток – Общее кол-во тепла, выделяемого системой ТП с 1 квадратного метра.
  • С уммарный тепловой поток на погонный метр – Общее кол-во тепла, выделяемого системой ТП с 1 погонного метра трубы.
  • С редняя температура теплоносителя – Средняя величина между расчетной температурой теплоносителя подающего трубопровода и расчетной температурой теплоносителя обратного трубопровода.
  • М аксимальная температура пола – Максимальная температура поверхности пола по оси нагревательного элемента.
  • М инимальная температура пола – Минимальная температура поверхности пола по оси между трубами ТП.
  • С редняя температура пола – Слишком высокое значение данного параметра может быть дискомфортно для человека (нормируется СП 60.13330.2012). Для уменьшения данного параметра необходимо увеличить шаг труб, снизить температуру теплоносителя либо увеличить толщину слоев над трубами.
  • Д лина трубы – Общая длина трубы ТП с учетом длины подводящей магистрали. При высоком значении данного параметра калькулятор рассчитает оптимальное кол-во петель и их длину.
  • Т епловая нагрузка на трубу – Суммарное количество тепловой энергии, получаемое от источников тепловой энергии, равное сумме теплопотреблений приемников тепловой энергии и потерь в тепловых сетях в единицу времени.
  • Р асход теплоносителя – Массовое кол-во теплоносителя предназначенного для подачи необходимого кол-ва тепла в помещение в единицу времени.
  • С корость движения теплоносителя – Чем выше скорость движения теплоносителя, тем выше гидравлическое сопротивление трубопровода, а также уровень шума, создаваемого теплоносителем. Рекомендуемое значение от 0.15 до 1м/с. Данный параметр можно уменьшить за счет увеличения внутреннего диаметра трубы.
  • Л инейные потери давления – Снижение напора по длине трубопровода, вызванного вязкостью жидкости и шероховатостью внутренних стенок трубы. Без учета местных потерь давления. Значение не должно превышать 20000Па. Можно уменьшить за счет увеличения внутреннего диаметра трубы.
  • О бщий объем теплоносителя – Общее кол-во жидкости для заполнения внутреннего объема труб системы ТП.

Калькулятор работает в тестовом режиме. Дата добавления калькулятора 11.03.2018

OtoplenieCalc.ru — онлайн калькуляторы расчета отопления

Наш калькулятор поможет вам быстро и максимально точно рассчитать мощность отопительных приборов для дома на основе нескольких параметров, подсчитать количество секций в радиаторах и узнать о расходах на отопление.

Правильный расчёт отопительной системы – важнейший этап на стадии строительства дома. От того, насколько правильно вы подберете котел и количество радиаторов зависит эффективность отопления и расходы на него. Ведь если, например, установить котел меньшей мощности, чем нужно, или недостаточное количество радиаторов, то в холодное время года вам придется пользоваться дополнительными источниками тепла – а это значит, что затраты на обогрев помещения вырастут в разы.

Читайте также:
Проект Дома ДОК-215 / Киото: особенности проектирования, чертежи, фото

Чтобы облегчить вам расчет системы отопления, мы создали простые, удобные и максимально точные калькуляторы, которые позволят не допустить критичных ошибок при расчетах.

Бесплатные онлайн калькуляторы расчета отопления

Получите точные данные по расчету теплопотерь вашего дома, мощности отопительного котла, количества радиаторов и расходов на отопление

Расчет мощности котла и теплопотерь

Просто введите и выберите готовые значения и нажмите на кнопку “Рассчитать”. Вы получите нужные вам данные: мощность котла и теплопотери дома

Расчет количества секций радиаторов отопления

Калькулятор позволяет правильно рассчитать количество секций в радиаторах отопления для максимальной эффективности.

Посчитать расходы и сравнить

После расчета вы сможете узнать, сколько вы тратите на отопление и сравнить затраты с тем или иным источником тепла.

Полезные статьи об отоплении в нашем блоге

Промывка системы отопления в доме

Промывка системы отопления в доме своими руками – как это сделать

Наличие в частном доме системы отопления предоставляет возможность обогревать весь дом, а не только.

Выбираем оптимальный газовый котел

Выбираем оптимальный газовый котел для отопления

Решая бытовую проблему — какой газовый котел выбрать для частного дома, следует учитывать ряд особенностей.

Установка циркуляционного насоса – правильный монтаж своими руками

Стабильное перемещение теплоносителя по системе отопления помогает быстро прогреть жилище и эффективнее.

Проектирование отопления дома

Оборудовать котельную

Котельная должна быть оборудована в соответствии с требованиями, так что к этому вопросу нужно подойти серьезно.

Рассчитать мощность и типа котла

От мощности котла зависит эффективность всей отопительной системы. Если вы выбрали слабый котел, то готовьтесь к дополнительным тратам.

Рассчитать количество радиаторов и секций в них

Это тоже важный параметр, недостаточное количество радиаторов снижает эффективность отопительной системы.

Выбрать схему подключения радиаторов

Система подключения радиаторов отопления может быть однотрубной, двухтрубной, лучевой или выполнена по схеме Тихельмана

Монтаж котла, обвязка, подключение радиаторов

На этом этапе следует тщательно продумать схему обвязки котла, подключения радиаторов, циркуляционного насоса, расширительного бака и других элементов

Заполнение системы теплоносителем и запуск

На последнем шаге остается только наполнить систему водой или антифризом, а потом запустить и протестировать систему отопления.

Для обеспечения комфортного проживания в холодное время года еще на этапе проецирования частного дома нужно позаботиться о расчете и монтаже отопления. Правильно произведенные тепловые калькуляции позволят определить оптимальную и экономически выгодную отопительную систему. Любая погрешность может привести к тому, что вы будете мерзнуть либо в здание будет жарко и душно.

Самостоятельные расчеты не окажутся проблемой для людей с техническим образованием. Однако не каждый обладает физико-математическими навыками, поэтому хорошим путеводителем в подсчетах будет онлайн калькулятор. Он поможет выявить тепловые потери дома и вычислить мощность, которой должен обладать котел. Так же определит количество необходимых радиаторов и сколько должно быть в нем секций. Сделает за вас расчет затрат на отопление, что пригодится для выбора подходящего источника тепла. Соберите нужные данные для вычисления.

Определите тепловые потери. Для этого, необходимо знать, из какого материала построены внешние стены и напольные покрытия, чем утеплены и их толщину. Измерьте площадь дома, окон и наружных дверей. Высокая интенсивность потери тепла у вентиляции и канализации. Их тоже нужно учитывать в расчетах.

Читайте также:
Нормы установки и правила монтажа вентиляции в частном доме

Климатические условия местонахождения дома играют важную роль в выборе отопительной системы. Узнайте среднегодовую и минимальную температуру в вашем регионе, а также среднюю скорость ветра.

Расчет мощности котла и теплопотерь.

Собрав все необходимые показатели, приступайте к калькуляции. Конечный результат укажет количество расходуемого тепла и сориентирует вас на выбор котла. При расчете теплопотерь за основу берутся 2 величины:

  1. Разница температуры снаружи и внутри здания (ΔT);
  2. Теплозащитные свойства объектов дома (R);

Для выявления расхода тепла ознакомимся с показателями сопротивления теплопередачи некоторых материалов

Таблица 1. Теплозащитные свойства стен

толщина в 3 кирпича (79 сантиметров)

толщина в 2.5 кирпича (67 сантиметров)

толщина в 2 кирпича (54 сантиметров)

Данные в таблице указаны с температурной разницей 50 °(на улице -30°,а в помещение +20°)

Таблица 2. Тепловые расходы окон

Тип окна RT q. Вт/ Q. Вт
Обычное окно с двойными рамами 0.37 135 216
Стеклопакет (толщина стекла 4 мм)

RT — сопротивление теплопередачи;

  1. Вт/м^2 – количество тепла, которое расходуется на один кв. м. окна;

четные цифры указывают на воздушное пространство в мм;

Ar — зазор в стеклопакете заполнен аргоном;

К – окно имеет наружное тепловое покрытие.

Имея в наличии стандартные данные о теплозащитных свойствах материалов, и определив перепад температур легко рассчитать тепловые потери. На пример:

Снаружи — 20°С., а внутри +20°С. Стены построены из бревна диаметром 25см. В этом случае

R = 0.550 °С· м2/ Вт. Тепловой расход будет равен 40/0.550=73 Вт/ м2

Теперь можно приступить к выбору источника тепла. Существуют несколько видов котлов:

  • Электрические котлы;
  • Газовые котлы
  • Нагреватели на твердом и жидком топливе
  • Гибридные (электрические и на твердом топливе)

Перед тем как приобрести котел, вы должны знать, какая мощность потребуется для поддержания благоприятной температуры в доме. Для этого существуют два способа определения:

  1. Расчет мощности по площади помещений.

По статистике принято считать, что для нагрева 10 м2 требуется 1 кВт теплоэнергии. Формула применима в случае, когда высота потолка не более 2,8 м и дом средне утеплен. Суммируем площадь всех комнат.

Получаем, что W=S×Wуд/10, где W- мощность теплогенератора, S-общая площадь здания, а Wуд является удельной мощность, которая в каждом климатическом поясе своя. В южных регионах она 0,7-0,9 кВт, в центральных 1-1,5 кВт, а на севере от 1,5 кВт до 2 кВт. Допустим, котел в доме площадью 150 кв.м, который находится в средних широтах должен обладать мощностью 18-20кВт. Если потолки выше стандартных 2,7м, например, 3м, в этом случае 3÷2,7×20=23 (округляем)

  1. Расчет мощности по объему помещений.

Этот тип вычислений можно произвести, придерживаясь строительных норм и правил. В СНиП прописан расчет мощности отопления в квартире. Для кирпичного дома на 1 м3 приходится 34 Вт, а в панельном – 41 Вт. Объем жилья определяется умножением площади на высоту потолка. Например, площадь апартаментов 72 кв.м., а высота потолков 2,8 м. Объем будет равен 201,6 м3. Так, для квартиры в кирпичном доме мощность котла будет равна 6,85 кВт и 8,26 кВт в панельном. Правка возможна в следующих случаях:

  • На 0.7, когда этажом выше или ниже находится неотапливаемая квартира;
  • На 0.9, если ваша квартира на первом или последнем этаже;
  • Коррекция производится при наличии одной внешней стены на 1,1, две – на 1,2.

Расчёт радиаторов отопления на квадратный метр

Несмотря на разнообразие рынка отопительных систем, радиаторы всегда остаются в тренде. Однако владельцы отопительного оборудования часто допускают ошибки в его эксплуатации. Самая распространенная является несоответствие теплоотдачи батареи с площадью помещения. Самым простым способом расчёта батареи является 100 Вт на 1 м2. Зная площадь комнаты, умножьте ее на 100.

Если радиатор многосекционный, то воспользуйтесь формулой: N = Q/ Qус, где N это количества секции, а Qус – мощность каждой секции по отдельности. В случае, когда высота потолков превышает 2,7 м., воспользуйтесь расчетом по объему. Для более точной информации теплоотдачи можно воспользоваться коэффициентами:

  • Количество внешних стен (Кф. 1.1, 1.2);
  • Направленность комнаты на стороны света (Кф. 1.1, если на север и восток);
  • Коэффициент утепления стен (0.85, 1, 1.27);
  • Климатические условия (-35° — Кф. 1.5, -25°- Кф. 1.3, -15°- Кф. 1.1, -10° — Кф 0.7);
  • Высота потолков (Кф. От 1 до 1.2);
  • Этаж квартиры (Кф. От 1 до 0.8);

Тип оконной рамы (из дерева -1.27, однослойный стеклопакет – 1, двойной стеклопакет – 0.85);

Q = S × 100 ×… (значение коэффициента)

Расчет затрат на отопление

Хорошая отопительная система требует достаточно больших финансовых вложений. Основные расходы связаны с:

  1. Оборудование отопительной системы. В него входят котел, насос, радиаторы и материал для разводки.
  2. Установка обогревательной системы.
  3. Затраты на топливо. Количество потраченных денег зависит от выбранного вами топлива.
  4. Поддержка оборудования в рабочем состояние.

При расчете затрат нужно учитывать удельную теплоту сгорания. Рассчитайте путем деления теплопотери за сезон на теплотворность сырьевого продукта и получите количество использованного топлива. Умножьте на стоимость за единицу измерения.

Еще один метод подсчета — это расход кВт в час. На дом, площадью 120 м2 потребляется 12 кВт теплоэнергии. В месяц выходит 8640 кВт. Способ подходит для пользователей газа и электричества

Отопление

кг/с в м3/ч. Перевод массового расхода среды в объемный.

Онлайн калькулятор перевода массового расхода кг/с в объемный м3/ч, л/с и л/мин. В зависимости от температуры среды, калькулятор рассчитывает плотность среды и переводит массовый расход в объемный.

Сравнение типов отопительных приборов

Плюсы и минусы отопительных приборов В системах водяного отопления зданий возможно применить следующие отопительные приборы: Параметр Чугунные секционные радиаторы Алюминиевые секционные радиаторы Биметаллические секционные радиаторы Стальные колончатые радиаторы Стальные панельные […]

Расчет диаметра балансировочной шайбы

Онлайн расчет диаметра дросселирующей шайбы для гидравлической увязки веток системы отопления Шайбы применяются для гидравлической увязки отдельных веток, обсуживающих отопление вестибюлей, лестничных клеток, сквозных проходов и пр. с основной системой […]

Проверка работоспособности элеваторной системы отопления

Проверка условия работоспособности и условия неопрокидывания системы отопления при однотрубной системе с нижней разводкой подающих магистралей Данный калькулятор может быть полезен тем, кто занимается реконструкцией однотрубных систем отопления в жилых […]

Расчет гравитационного давления онлайн

Расчет гравитационного давления в стояке системы отопления и естественной тяги в вентиляционной шахте Например для системы водяного отопления, гравитационное давление ΔРгр определяется при расчетных параметрах теплоносителя в подающем и обратном […]

Быстрая замена L и T-образных трубок на Стабил

Калькулятор замены L и T-образных трубок на Стабил Калькулятор в помощь менеджерам =)

Перевод КМС в Па. Как рассчитать потери давления на местных сопротивлениях

Расчет потерь напора из-за местных сопротивлений. Сопротивление в сети, связанные с встроенными в систему конструкционными и монтажными элементами разделяют на сопротивления в фасонных частях, так называемые «местные сопротивления», и сопротивления […]

Проверка показаний теплосчетчика онлайн

Как проверить правильно ли считает теплосчетчик? Теплосчетчик измеряет 3 параметра: 1 – температуру теплоносителя в подающем трубопроводе Т1 — ºС 2 – температуру теплоносителя в обратном трубопроводе Т2 — ºС […]

Расчет тепловой нагрузки по укрупненным показателям МДК 4-05.2004

Расчет часовой нагрузки отопления, вентиляции и ГВС по укрупненным показателям При отсутствии проектной информации, онлайн-калькулятор рассчитывает часовую тепловую нагрузку отопления, вентиляции и горячего водоснабжения отдельного здания по укрупненным показателям. SP […]

Онлайн замена радиаторов Prado на Purmo

Радиатор Prado высотой 300 мм. меняем на Purmo высотой 300…400 мм. Радиатор Prado высотой 500 мм. меняем на Purmo высотой 400…600 мм. Калькулятор автоматически подбирает панельный радиатор Purmo Compact или […]

Замена клапана Danfoss AB-QM на Sanext DS

Онлайн замена клапана Danfoss AB-QM на Sanext DS с подбором настройки клапана Калькулятор подбирает диаметр и настройку автоматического регулятора расхода Sanext DS, по известным диаметру и настройке клапана Danfoss AB-QM.

Маркировка типовых коллекторов Sanext

Маркировка типового этажного коллектора отопления Sanext Калькулятор составляет типовую маркировку этажного коллектора Sanext для системы отопления. Маркировка типового коллектора ГВС / ХВС Sanext Калькулятор составляет типовую маркировку коллектора Sanext для […]

Расчет диаметра коллектора

Онлайн расчет диаметра сборно-распределительного коллектора системы отопления, теплоснабжения, водопровода Калькулятор рассчитывает минимально необходимый внутренний диаметр сборно-распределительного коллектора, который может быть применен в системах отопления и теплоснабжения. Рекомендуется патрубки к коллектору […]

Примеры гидравлических расчетов систем отопления и теплоснабжения зданий

В качестве расчетного инструмента, воспользуемся программой Auditor C.O. версии 3.8. Рассмотрим простое, горизонтально расположенное циркуляционное кольцо. От условного источника тепла передается 10 кВт. тепла по трубам диаметром 25 мм. В […]

retailengineering.ru

Разбавление и смешивание пропиленгликоля, этиленгликоля, уксуса, самогона и т.д.

Онлайн калькулятор разбавления водных растворов Калькулятор позволяет рассчитать объем воды, необходимый для разбавления водного раствора до требуемой концентрации. Идеально подходит для расчета разбавления самогона, уксуса, пропилен и этиленгликоля, солевых и […]

Расчет этажного коллектора системы отопления Sanext

Онлайн расчет гидравлической увязки циркуляционных колец системы отопления в этажном коллекторе Sanext При лучевой разводке от коллектора трубопроводов отопления из сшитого полиэтилена, необходимо производить их гидравлическую увязку. Пример выполнен с […]

Расчет температурного удлинения трубопроводов 1

Онлайн расчет температурного удлинения труб и плеча компенсатора. Подбор осевого сильфонного и петлеобразного компенсатора Г — образный компенсатор П — образный компенсатор При устройстве П-образного компенсатора, желательно его конструировать так, […]

Расчет скорости воды в трубопроводе

Онлайн расчет скорости теплоносителя в трубопроводах Труба «Универсальная» предназначена для использования в системах водяного отопления, а также горячего и холодного (в т.ч. питьевого) водоснабжения. Труба «Стабил» предназначена для применения в […]

Расчет диаметра и настройки автоматического балансировочного клапана

Онлайн подбор автоматического балансировочного клапана Sanext DPV и Danfoss APT Калькулятор подбирает диаметр клапана по расходу теплоносителя который проходит через него и по необходимому сопротивлению клапана подбирает значение настройки клапана. […]

Sanext

Расчет нагрева ГВС

Онлайн расчет тепла для нагрева горячей воды согласно СП 30.13330.2016 Калькулятор считает необходимое тепло на нагрев горячей воды с учетом потерь тепла в трубопроводах ГВС, полотенцесушителе или в водонагревателе при наличии. […]

Расчет теплотворной способности энергоносителей

Перевод тепловой мощности в часовой расход энергоносителей с учетом КПД котла. При сравнении различных видов энергоносителей не забывайте изменять КПД котла, т.к. не бывает котлов на дровах с КПД равным […]

Расчет количества ступеней теплообменника ГВС

Схема присоединения к тепловым сетям теплообменников ГВС в закрытых системах теплоснабжения выбирается в зависимости от соотношения максимального потока тепловой энергии на горячее водоснабжение и максимального потока тепловой энергии на отопление. […]

Расчет расширительного бака для отопления

Онлайн расчет объема мембранного расширительного бака для системы отопления Примечание: Если часто срабатывает предохранительный клапан, то расширительный бак подобран не правильно. Негативных последствий от завышения объёма бака, сверх расчётного — […]

Калькулятор расчета общего объёма системы отопления

Иногда у владельцев домов или квартир, в которых установлено автономное водяное отопление, возникает потребность точно определить общий объем системы. Чаще всего это связано с необходимостью проведения тех или иных профилактических и регламентных работ, в ходе которых придется полностью опорожнить систему, а затем – заполнить ее новым теплоносителем. При использовании обычной воды это, возможно, не столь актуально (хотя и ее желательно правильно подготовить к такой «миссии»), но когда приобретается специальный теплоноситель, который может стоить недешево, для планирования покупки без знания объема не обойтись.

Калькулятор расчета общего объёма системы отопления

Калькулятор расчета общего объёма системы отопления

Информация об объеме системы отопления бывает необходима и для других нужд. Так, например, это значение в обязательном порядке потребуется для правильного подбора расширительного бака. Некоторые расчеты, проводимые при модернизации системы и замене того или иного оборудования, также могут потребовать эту величину для подстановки в теплотехнические формулы. Одним словом, знать такой параметр – никогда не будет лишним. А определиться с ним поможет расположенный ниже калькулятор расчета общего объёма системы отопления.

Цены на расширительные баки

В ходе расчета могут возникнуть неясности – на этот случай ниже калькулятора размещены необходимые пояснения.

Калькулятор расчета общего объёма системы отопления

Пояснения по проведению расчетов

Главный редактор проекта Stroyday.ru. Инженер.

Итак, если нет никакой возможности промерить объем системы отопления экспериментальным путём (например, аккуратно заполняя ее из водопровода, с засечкой показаний счетчика расхода воды), то придётся провести математические вычисления. Сводятся они к тому, что проводится суммирование объемов всех установленных в системе приборов и трубных контуров. Часть значений – должна быть уже известна, остальные можно рассчитать, используя геометрические формулы объема.

  • Объем теплообменника котла – это значение всегда есть в технической документации любой модели.
  • Объём расширительного бака. Он тоже должен быть известен владельцам. То, что любой бак никогда не должен быть заполнен доверха, учтено в программе калькулятора.

Кстати, иногда требуется решить и несколько другую задачу – узнать объём системы без расширительной емкости, именно для правильного ее подбора. В этом случае на слайдере «объем расширительного бака» необходимо поставить значение «0», и полученное итоговое значение и станет исходным пунктом для выбора оптимальной модели.

Как проводится расчет расширительного бака?

Это – обязательный элемент системы отопления, который должен в полной мере соответствовать ее параметрам. Как провести расчет необходимого объема мембранного расширительного бака – читайте в публикации, посвящённой созданию системы отопления закрытого типа .

  • Следующая позиция – это объем установленных приборов теплообмена. Для разборных батарей можно указать количество секций и их тип – объем наиболее распространенных радиаторов уже внесен в программу расчета. Если радиаторы или конвекторы неразборные, то указывается их емкость по паспорту и, соответсвенно, количество приборов.

Если в доме смонтированы теплые полы, то расчет будет произведен по суммарной длине контуров и типу использованных для этого труб. В базу данных программы заложены необходимые параметры для контуров из металлопластиковых труб и для неармированных РЕХ — из сшитого полиэтилена.

  • Значительная часть общего объёма системы отопления всегда приходится на контуры – трубы подачи и «обратки». Характерно, что при монтаже нередко используются из различные типы, причем не только по внешнему диаметру, но и по материалу изготовления. А так как у разных типов могут существенно отличаться внутренние диаметры (из-за отличающейся толщины стенок при равенстве внешних диаметров), то это сказывается и на объемах.

В алгоритме расчета это учтено. Необходимо только заранее промерить длину участков каждого из типа труб, а потом указать их в соответствующих полях ввода данных калькулятора. Например, в системе использованы стальные трубы ВГП. Отмечаем в калькуляторе, что да, они имеются – и появляется группа слайдеров, в которых останется только ввести длину участков для каждого их существующих стандартных диаметров. Если какого-то диаметра в системе нет, то оставляется значение длины по умолчанию, то есть «0».

Точно так же организован ввод данных и подсчет объёма и для других типов – металлопластиковых и армированных полипропиленовых труб.

Расчет-онлайн водяных калориферов

На данной странице представлен онлайн-расчет водяных калориферов. В режиме онлайн можно рассчитать следующие данные:
1. необходимую мощность калорифера для приточной установки, в зависимости от объема и температуры нагреваемого воздуха;
2. температуру воздуха на выходе из водяного калорифера, в зависимости от его мощности, объема и температуры воздуха;
3. расход горячей воды , в зависимости от подобранной мощности калорифера и используемого графика теплоносителя.

Калькулятор расчета калорифера

Расчет водяного калорифера онлайн калькулятор

Онлайн расчет водяного воздухонагревателя

Онлайн-расчет мощности водяного калорифера

Расход тепла водяным калорифером на подогрев приточного воздуха. В поля калькулятора вносятся показатели: объем нагнетаемого вентилятором холодного воздуха, температура входящего в калорифер воздуха, необходимая температура на выходе из калорифера. По результатам онлайн-расчета показывается требуемая мощность водяного калорифера для соблюдения заданных условий.

1 поле. Объем проходящего через калорифер приточного воздуха, м³/ч
2 поле. Температура воздуха на входе в водяной калорифер, °С
3 поле. Необходимая температура воздуха на выходе из калорифера, °С
4 поле (результат). Требуемая тепловая мощность водяного калорифера, кВт

Онлайн-подбор водяного калорифера

Онлайн-подбор водяного калорифера по объему нагреваемого воздуха и тепловой мощности. Ниже выложена таблица с номенклатурой водяных биметаллических оребренных калориферов производства ЗАО Т.С.Т., по которой подбирается подходящий для ваших данных водовоздушный воздухонагреватель. Изначально ориентируясь на показатели производительности по воздуху в час, можно выбрать водяной калорифер приточной установки для наиболее распространенных тепловых режимов. Кликнув мышкой по названию воздухоподогревателя, Вы перейдете на страницу с подробными теплотехническими параметрами и рабочими расчетами на разные температурные режимы данного водяного калорифера.

Наименование калорифера Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с Диапазон тепловой мощности, кВт
КСк 2-1-02 ХЛ3 1500 – 2500 -15 / +20 20 – 34
КСк 3-1-02 ХЛ3 -20 / +20 24 – 39
КСк 4-1-02 ХЛ3 -20 / +25 27 – 44
КФБ-2 А3 УХЛ3 м -25 / +20 27 – 45
КФБ-2 А4 УХЛ3 м -30 / +20 31 – 51
Наименование калорифера Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с Диапазон тепловой мощности, кВт
КСк 2-2-02 ХЛ3 2000 – 3500 -15 / +20 27 – 47
КСк 3-2-02 ХЛ3 -20 / +20 31 – 55
КСк 4-2-02 ХЛ3 -20 / +25 35 – 62
КСк 2-6-02 ХЛ3 -18 / +20 30 – 52
КСк 3-6-02 ХЛ3 -22 / +25 37 – 65
КСк 4-6-02 ХЛ3 -25 / +28 42 – 74
КФБ-3 А3 УХЛ3 м -25 / +18 34 – 60
КФБ-3 А4 УХЛ3 м -27 / +28 44 – 78
ТВВ 306 ХЛ3 -28 / +18 37 – 65
ТВВ 406 ХЛ3 -35 / +20 46 – 80
Наименование калорифера Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с Диапазон тепловой мощности, кВт
КСк 2-3-02 ХЛ3 2500 – 4000 -15 / +20 34 – 54
КСк 3-3-02 ХЛ3 -20 / +20 39 – 63
КСк 4-3-02 ХЛ3 -20 / +25 44 – 71
КСк 2-7-02 ХЛ3 -18 / +20 37 – 59
КСк 3-7-02 ХЛ3 -22 / +25 47 – 75
КСк 4-7-02 ХЛ3 -25 / +28 53 – 85
КФБ-4 А3 УХЛ3 м -25 / +18 43 – 69
КФБ-4 А4 УХЛ3 м -27 / +28 56 – 89
ТВВ 307 ХЛ3 -28 / +18 47 – 75
ТВВ 407 ХЛ3 -35 / +20 57 – 92
Наименование калорифера Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с Диапазон тепловой мощности, кВт
КСк 2-4-02 ХЛ3 3500 – 5000 -15 / +20 47 – 67
КСк 3-4-02 ХЛ3 -20 / +20 55 – 79
КСк 4-4-02 ХЛ3 -20 / +25 62 – 88
КСк 2-8-02 ХЛ3 -18 / +20 52 – 74
КСк 3-8-02 ХЛ3 -22 / +25 65 – 93
КСк 4-8-02 ХЛ3 -25 / +28 74 – 106
КФБ-5 А3 УХЛ3 м -25 / +18 60 – 86
КФБ-5 А4 УХЛ3 м -27 / +28 78 – 111
ТВВ 308 ХЛ3 -28 / +18 65 – 93
ТВВ 408 ХЛ3 -35 / +20 80 – 115
Наименование калорифера Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с Диапазон тепловой мощности, кВт
КСк 2-5-02 ХЛ3 4000 – 5500 -15 / +20 54 – 74
КСк 3-5-02 ХЛ3 -20 / +20 63 – 87
КСк 4-5-02 ХЛ3 -20 / +25 71 – 97
КСк 2-9-02 ХЛ3 -18 / +20 59 – 81
КСк 3-9-02 ХЛ3 -22 / +25 74 – 102
КСк 4-9-02 ХЛ3 -25 / +28 85 – 117
КФБ-6 А3 УХЛ3 м -25 / +18 69 – 95
КФБ-6 А4 УХЛ3 м -27 / +28 89 – 122
ТВВ 309 ХЛ3 -28 / +18 75 – 103
ТВВ 409 ХЛ3 -35 / +20 92 – 126
Наименование калорифера Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с Диапазон тепловой мощности, кВт
КСк 2-10-02 ХЛ3 5000 – 7000 -15 / +20 67 – 94
КСк 3-10-02 ХЛ3 -20 / +23 85 – 118
КСк 4-10-02 ХЛ3 -23 / +28 101 – 142
КФБ-7 А3 УХЛ3 м -25 / +22 94 – 132
КФБ-7 А4 УХЛ3 м -27 / +30 115 – 161
ТВВ 310 ХЛ3 -28 / +18 93 – 131
ТВВ 410 ХЛ3 -35 / +22 119 – 167
Наименование калорифера Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с Диапазон тепловой мощности, кВт
КФБ-8 А3 УХЛ3 м 7000 – 9000 -28 / +18 131 – 168
КФБ-8 А4 УХЛ3 м -35 / +22 167 – 214
КФБ-9 А3 УХЛ3 м 9000 – 11000 -28 / +18 168 – 205
КФБ-9 А4 УХЛ3 м -35 / +22 214 – 262
КФБ-10 А3 УХЛ3 м 10000 – 12000 -28 / +18 187 – 224
КФБ-10 А4 УХЛ3 м -35 / +22 238 – 286
КФБ-11 А3 УХЛ3 м 12000 – 14000 -28 / +18 224 – 261
КФБ-11 А4 УХЛ3 м -35 / +22 286 – 334
КФБ-12 А3 УХЛ3 м 13000 – 15000 -28 / +18 243 – 280
КФБ-12 А4 УХЛ3 м -35 / +22 310 – 357
Наименование калорифера Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с Диапазон тепловой мощности, кВт
КСк 2-11-02 ХЛ3 15000 – 18000 -15 / +20 202 – 242
КСк 3-11-02 ХЛ3 -20 / +23 254 – 304
КСк 4-11-02 ХЛ3 -23 / +28 304 – 365
КФБ-13 А3 УХЛ3 м -25 / +20 271 – 325
КФБ-13 А4 УХЛ3 м -27 / +28 333 – 400
ТВВ 311 ХЛ3 -28 / +18 280 – 336
ТВВ 411 ХЛ3 -35 / +22 357 – 429
Наименование калорифера Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с Диапазон тепловой мощности, кВт
КФБ-14 А3 УХЛ3 м 18000 – 20000 -28 / +18 336 – 374
КФБ-14 А4 УХЛ3 м -35 / +22 428 – 476
КСк 2-12-02 ХЛ3 20000 – 25000 -15 / +20 270 – 337
КСк 3-12-02 ХЛ3 -20 / +23 338 – 422
КСк 4-12-02 ХЛ3 -25 / +28 425 – 531
ТВВ 312 ХЛ3 -30 / +18 392 – 491
ТВВ 412 ХЛ3 -35 / +25 501 – 626

Онлайн-расчет температуры воздуха на выходе из водяного калорифера

В поля калькулятора вносятся показатели: объем нагреваемого воздуха, температура воздуха на входе в калорифер, мощность подобранного воздухонагревателя. По результатам онлайн-расчета представлена температура выходящего нагретого воздуха.

1 поле. Объем проходящего через калорифер приточного воздуха, м³/ч
2 поле. Температура воздуха на входе в водяной калорифер, °С
3 поле. Тепловая мощность подобранного воздухонагревателя, кВт
4 поле (результат). Температура воздуха на выходе из калорифера, °С

Онлайн-расчет расхода теплоносителя калорифером

Расход воды в зависимости от температурного графика теплоносителя и мощности воздухонагревателя. В поля онлайн-калькулятора расчета калорифера вносятся показатели: мощность подобранного калорифера, температура входящего теплоносителя (прямоток), температура теплоносителя на выходе из калорифера (обратная магистраль). По результатам онлайн-расчета выводится необходимое количество теплоносителя в час для соблюдения заложенных условий.

1 поле. Производительность по теплу (мощность) водяного калорифера, кВт
2 поле. Температура теплоносителя на подаче в воздухонагреватель, °С
3 поле. Температура теплоносителя на выходе из воздухонагревателя, °С
4 поле (результат). Расход теплоносителя калорифером при данном температурном графике, кг/час

Калькуляторы онлайн-расчета водяных калориферов служат для предварительного подбора воздухонагревателей. Подробный пошаговый расчет и подбор водовоздушных калориферов представлен на странице сайта: Калориферы КСк. Расчет и подбор.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Строительный
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: