Расчёт теплопотерь через ограждающие конструкции

Расчёт теплопотерь через ограждающие конструкции

Дом теряет тепло через ограждающие конструкции (стены, окна, крыша, фундамент), вентиляцию и канализацию. Основные потери тепла идут через ограждающие конструкции — 60–90% от всех теплопотерь.

Расчет теплопотерь дома нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме. Вот пример расчёта для газового котла и электрического. Также можно благодаря расчётам провести анализ финансовой эффективности утепления, т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя.

Приведу пример расчета для внешних стен двухэтажного дома.

0,5 м / 0,16 Вт/(м×°C) = 3,125 м 2 ×°C/Вт

0,32 Вт / м 2 ×°C × 240 м 2 × 40 °C = 3072 Вт

3072 Вт × 1 ч = 3,072 кВт×ч

За 24 часа уходит энергии:

Например, за 7 месяцев отопительного периода средняя разница температур в помещении и на улице была 28 градусов, значит теплопотери через стены за эти 7 месяцев в киловатт-часах:

0,32 Вт / м 2 ×°C × 240 м 2 × 28 °C × 7 мес × 30 дней × 24 ч = 10838016 Вт×ч = 10838 кВт×ч

Число вполне «осязаемое». Например, если бы отопление было электрическое, то можно посчитать сколько бы ушло денег на отопление, умножив полученное число на стоимость кВт×ч. Можно посчитать сколько ушло денег на отопление газом, вычислив стоимость кВт×ч энергии от газового котла. Для этого нужно знать стоимость газа, теплоту сгорания газа и КПД котла.

Кстати, в последнем вычислении вместо средней разницы температур, количества месяцев и дней (но не часов, часы оставляем), можно было использовать градусо-сутки отопительного периода — ГСОП, некоторая информация про ГСОП здесь. Можно найти уже посчитанные ГСОП для разных городов России и перемножать теплопотери с одного квадратного метра на площадь стен, на эти ГСОП и на 24 часа, получив теплопотери в кВт*ч.

Аналогично стенам нужно посчитать значения теплопотерь для окон, входной двери, крыши, фундамента. Потом всё просуммировать и получится значение теплопотерь через все ограждающие конструкции. Для окон, кстати, не нужно будет узнавать толщину и теплопроводность, обычно уже есть готовое посчитанное производителем сопротивление теплопередаче стеклопакета. Для пола (в случае плитного фундамента) разница температур не будет слишком большой, грунт под домом не такой холодный, как наружный воздух.

Примерный объем имеющегося воздуха в доме (объём внутренних стен и мебели не учитываю):

10 м х10 м х 7 м = 700 м 3

Плотность воздуха при температуре +20°C 1,2047 кг/м 3 . Удельная теплоемкость воздуха 1,005 кДж/(кг×°C). Масса воздуха в доме:

700 м 3 × 1,2047 кг/м 3 = 843,29 кг

Допустим, весь воздух в доме меняется 5 раз в день (это примерное число). При средней разнице внутренней и наружной температур 28 °C за весь отопительный период на подогрев поступающего холодного воздуха будет в среднем в день тратится тепловой энергии:

5 × 28 °C × 843,29 кг × 1,005 кДж/(кг×°C) = 118650,903 кДж

118650,903 кДж = 32,96 кВт×ч (1 кВт×ч = 3600 кДж)

Т.е. во время отопительного периода при пятикратном замещении воздуха дом через вентиляцию будет терять в среднем в день 32,96 кВт×ч тепловой энергии. За 7 месяцев отопительного периода потери энергии будут:

7 × 30 × 32,96 кВт×ч = 6921,6 кВт×ч

Во время отопительного периода поступающая в дом вода довольно холодная, допустим, она имеет среднюю температуру +7°C. Нагрев воды требуется, когда жильцы моют посуду, принимают ванны. Также частично нагревается вода от окружающего воздуха в бачке унитаза. Всё полученное водой тепло жильцы смывают в канализацию.

Допустим, что семья в доме потребляет 15 м 3 воды в месяц. Удельная теплоёмкость воды 4,183 кДж/(кг×°C). Плотность воды 1000 кг/м 3 . Допустим, что в среднем поступающая в дом вода нагревается до +30°C, т.е. разница температур 23°C.

Соответственно в месяц теплопотери через канализацию составят:

1000 кг/м 3 × 15 м 3 × 23°C × 4,183 кДж/(кг×°C) = 1443135 кДж

1443135 кДж = 400,87 кВт×ч

За 7 месяцев отопительного периода жильцы выливают в канализацию:

7 × 400,87 кВт×ч = 2806,09 кВт×ч

В конце нужно сложить полученные числа теплопотерь через ограждающие конструкции, вентиляцию и канализацию. Получится примерное общее число теплопотерь дома.

Надо сказать, что теплопотери через вентиляцию и канализацию довольно стабильные, их трудно уменьшить. Не будете же вы реже мыться под душем или плохо вентилировать дом. Хотя частично теплопотери через вентиляцию можно снизить с помощью рекуператора.

Если я где-то допустил ошибку, напишите в комментарии, но вроде всё перепроверил несколько раз. Надо сказать, что есть значительно более сложные методики расчета теплопотерь, там учитываются дополнительные коэффициенты, но их влияние незначительное.

Читайте также:
Производство материала для натяжных потолков

Дополнение.
Расчет теплопотерь дома также можно сделать с помощью СП 50.13330.2012 (актуализированная редакция СНиП 23-02-2003). Там есть приложение Г «Расчет удельной характеристики расхода тепловой энергии на отопление и вентиляцию жилых и общественных зданий», сам расчет будет значительно сложнее, там используется больше факторов и коэффициентов.

Виктор (26.11.2015 05:20)
Дмитрий, спасибо за статью! Но вот как пользоваться этими данными не совсем понятно, я дом уже построил, но хочу второй этаж перестроить вот и ломаю голову из какого материала и какую систему отопления использовать, ПВХ или сталь, сталь на первом этаже, но на втором склоняюсь больше к ПВХ – чтобы теплосъема с труб было меньше, а также котел какой установить, можете что-нибудь про это написать?

Дмитрий (11.01.2016 06:03)
Дмитрий, здравствуйте, у меня возник вопрос по таблицам.Расчеты производятся по Цельсиям, а теплопроводность приводится и в Вт/м*К и в Вт/м*С(к примеру: пенополистилол до50кг/куб.м:в одной таблице Вт/м*К=0,040, в другой Вт/м*С=0,040(0,036-0,041).Как решить этот вопрос-все в кельвинах считать или?

Виктор (16.02.2016 09:42)
Расчет по теплопотерям слишком упрощенный. Дает заниженные значения.

Дочка (она теплотехник) давала алгоритм расчета тепловой нагрузки (упрощеный вариант, без учета инсоляции), куда входят как теплопотери, так и такие параметры как объем здания, коэффициент инфильтрации и еще ряд парамтеров.

Для одного и того же здания и одних и тех же условий расчет по этому алгоритму дает тепловую нагрузку в 17.2кВт. В то время как расчет по суммарным теплопотерям – всего 10.5кВт. Разница существенная.

Теплопотери дома, расчет теплопотерь.

Методика расчета теплопотерь частного дома, потери тепла в жилых и нежилых помещениях, примеры расчета теплопотерь.

На сегодняшний день теплосбережение является важным параметром, который учитывается при сооружении жилого или офисного помещения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплоотдаче рассчитывается по одному из двух альтернативных подходов:

  • Предписывающему;
  • Потребительскому.

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома.

Предписывающий подход – это нормы, предъявляемые к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.

Потребительский подход (сопротивление теплопередаче может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление помещения ниже нормативного).

  • Перепад между температурами воздуха внутри помещения и снаружи не должен превышать определенных допустимых значений. Максимальные допустимые значения перепада температур для наружной стены 4°С. для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
  • Температура на внутренней поверхности ограждения должна быть выше температуры точки росы.

К примеру: для Москвы и московской области необходимое теплотехническое сопротивление стены по потребительскому подходу составляет 1.97 °С· м 2 /Вт, а по предписывающему подходу:

  • для дома постоянного проживания 3.13 °С· м 2 / Вт.
  • для административных и прочих общественных зданий, в том числе сооружений сезонного проживания 2.55 °С· м 2 / Вт.

По этой причине, выбирая котел либо другие нагревательные приборы исключительно по указанным в их технической документации параметрам. Вы должны спросить у себя, построен ли ваш дом со строгим учетом требований СНиП 23-02-2003.

Следовательно, для правильного выбора мощности котла отопления либо нагревательных приборов, необходимо рассчитать реальные теплопотери вашего дома. Как правило, жилой дом теряет тепло через стены, крышу, окна, землю, так же существенные потери тепла могут приходиться на вентиляцию.

Теплопотери в основном зависят от:

  • разницы температур в доме и на улице (чем выше разница, тем выше потери).
  • теплозащитных характеристик стен, окон, перекрытий, покрытий.

Стены, окна, перекрытия, имеют определенное сопротивление утечкам тепла, теплозащитные свойства материалов оценивают величиной, которая называется сопротивлением теплопередачи.

Сопротивление теплопередачи покажет, какое количество тепла просочится через квадратный метр конструкции при заданном перепаде температур. Можно сформулировать этот вопрос по другому: какой перепад температур будет возникать при прохождении определенного количества тепла через квадратный метр ограждений.

R = ΔT/q.

  • q – это количество тепла, которое уходит через квадратный метр поверхности стены или окна. Это количество тепла измеряют в ваттах на квадратный метр (Вт/ м 2 );
  • ΔT – это разница между температурой на улице и в комнате (°С);
  • R – это сопротивление теплопередачи (°С/ Вт/ м 2 или °С· м 2 / Вт).

В случаях, когда речь идет о многослойной конструкции, то сопротивление слоев просто суммируется. К примеру, сопротивление стены из дерева, которая обложена кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.)

Распределение температуры и пограничные слои воздуха при передаче тепла через стену.

Расчет теплопотерь выполняется для самого холодного периода года периода, коим является самая морозная и ветреная неделя в году. В строительной литературе, зачастую, указывают тепловое сопротивление материалов исходя из данного условия и климатического района (либо наружной температуры), где находится ваш дом.

Таблица сопротивления теплопередачи различных материалов

Материал и толщина стены

Сопротивление теплопередаче Rm.

Кирпичная стена
толщ. в 3 кирп. (79 сантиметров)
толщ. в 2.5 кирп. (67 сантиметров)
толщ. в 2 кирп. (54 сантиметров)
толщ. в 1 кирп. (25 сантиметров)

Сруб из бревна Ø 25
Ø 20

Толщ. 20 сантиметров
Толщ. 10 сантиметров

Каркасная стена (доска +
минвата + доска) 20 сантиметров

Стена из пенобетона 20 сантиметров
30 см

Штукатурка по кирпичу, бетону.
пенобетону (2-3 см)

Потолочное (чердачное) перекрытие

Двойные деревянные двери

Таблица тепловых потерь окон различных конструкций при ΔT = 50 °С (Тнар. = –30 °С. Твнутр. = 20 °С.)

Тип окна

RT

q. Вт/м2

Q. Вт

Обычное окно с двойными рамами

Стеклопакет (толщина стекла 4 мм)

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К

Примечание
• Четные цифры в условном обозначении стеклопакета указывают на воздушный
зазор в миллиметрах;
• Буквы Ar означают, что зазор заполнен не воздухом, а аргоном;
• Буква К означает, что наружное стекло имеет специальное прозрачное
теплозащитное покрытие.

Как видно из вышеуказанной таблицы, современные стеклопакеты дают возможность сократить теплопотери окна почти в 2 раза. К примеру, для 10 окон размером 1.0 м х 1.6 м экономия может достигать в месяц до 720 киловатт-часов.

Для правильного выбора материалов и толщины стен применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один м 2 участвуют две величины:

  • перепад температур ΔT.
  • сопротивления теплопередаче R.

Допустим температура в помещении будет составлять 20 °С. а наружная температура будет равной –30 °С. В таком случае перепад температур ΔT будет равен 50 °С. Стены изготовлены из бруса толщиной 20 сантиметров, тогда R= 0.806 °С· м 2 / Вт.

Тепловые потери будут составлять 50 / 0.806 = 62 (Вт/ м 2 ).

Для упрощения расчетов теплопотерь в строительных справочниках указывают теплопотери различного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. Как правило, приводятся различные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых, а также учитывается разница в температур для помещений первого и верхнего этажа.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения

Наружная
температура.
°С

Теплопотери. Вт

1 этаж

2 этаж

Угловая
комната

Неугл.
комната

Угловая
комната

Неугл.
комната

Стена в 2.5 кирпича (67 см)
с внутр. штукатуркой

Стена в 2 кирпича (54 см)
с внутр. штукатуркой

Рубленая стена (25 см)
с внутр. обшивкой

Рубленая стена (20 см)
с внутр. обшивкой

Стена из бруса (18 см)
с внутр. обшивкой

Стена из бруса (10 см)
с внутр. обшивкой

Каркасная стена (20 см)
с керамзитовымзаполнением

Стена из пенобетона (20 см)
с внутр. штукатуркой

Примечание. В случае когда за стеной находится наружное неотапливаемое помещение (сени, остекленная веранда и т.п.), то потери тепла через нее будут составлять 70% от расчетных, а если за этим неотапливаемым помещением находится еще одно наружное помещение то потери тепла будут составлять 40% от расчетного значения.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Характеристика ограждения

Наружная
температура. °С

Теплопотери.
кВт

Окно с двойным остеклением

Сплошные деревянные двери (двойные)

Деревянные полы над подвалом

Далее давайте разберем пример расчета тепловых потерь 2 различных комнат одной площади при помощи таблиц.

Пример 1.

Угловая комната (1 этаж)

  • 1 этаж.
  • площадь комнаты – 16 м 2 (5х3.2).
  • высота потолка – 2.75 м.
  • наружных стен – две.
  • материал и толщина наружных стен – брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
  • окна – два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
  • полы – деревянные утепленные. снизу подвал.
  • выше чердачное перекрытие.
  • расчетная наружная температура –30 °С.
  • требуемая температура в комнате +20 °С.

Далее выполняем расчет площади теплоотдающих поверхностей.

  • Площадь наружных стен за вычетом окон: Sстен(5+3.2)х2.7-2х1.0х1.6 = 18.94 м 2 .
  • Площадь окон: Sокон = 2х1.0х1.6 = 3.2 м 2
  • Площадь пола: Sпола = 5х3.2 = 16 м 2
  • Площадь потолка: Sпотолка = 5х3.2 = 16 м 2

Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.

Теперь Выполним расчет теплопотери каждой из поверхностей:

  • Qстен = 18.94х89 = 1686 Вт.
  • Qокон = 3.2х135 = 432 Вт.
  • Qпола = 16х26 = 416 Вт.
  • Qпотолка = 16х35 = 560 Вт.

Суммарные теплопотери комнаты будут составлять: Qсуммарные = 3094 Вт.

Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.

Пример 2

Комната под крышей (мансарда)

  • этаж верхний.
  • площадь 16 м 2 (3.8х4.2).
  • высота потолка 2.4 м.
  • наружные стены; два ската крыши (шифер, сплошная обрешетка. 10 саниметров минваты, вагонка). фронтоны (брус толщиной 10 саниметров обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 саниметров).
  • окна – 4 (по два на каждом фронтоне), высотой 1.6 м и шириной 1.0 м с двойным остеклением.
  • расчетная наружная температура –30°С.
  • требуемая температура в комнате +20°С.

Далее рассчитываем площади теплоотдающих поверхностей.

  • Площадь торцевых наружных стен за вычетом окон: Sторц.стен = 2х(2.4х3.8-0.9х0.6-2х1.6х0.8) = 12 м 2
  • Площадь скатов крыши, ограничивающих комнату: Sскатов.стен = 2х1.0х4.2 = 8.4 м 2
  • Площадь боковых перегородок: Sбок.перегор = 2х1.5х4.2 = 12.6 м 2
  • Площадь окон: Sокон = 4х1.6х1.0 = 6.4 м 2
  • Площадь потолка: Sпотолка = 2.6х4.2 = 10.92 м 2

Далее рассчитаем тепловые потери этих поверхностей, при этом необходимо учесть, что через пол в данном случае тепло не будет уходить, так как внизу расположено теплое помещение. Теплопотери для стен рассчитываем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

  • Qторц.стен = 12х89 = 1068 Вт.
  • Qскатов.стен = 8.4х142 = 1193 Вт.
  • Qбок.перегор = 12.6х126х0.7 = 1111 Вт.
  • Qокон = 6.4х135 = 864 Вт.
  • Qпотолка = 10.92х35х0.7 = 268 Вт.

Суммарные теплопотери комнаты составят: Qсуммарные = 4504 Вт.

Как мы видим, теплая комната 1 этажа теряет (либо потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы данное помещение сделать пригодным для зимнего проживания, необходимо в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая поверхность может быть представлена в виде многослойной стены, каждый слой которой имеет собственное тепловое сопротивление и собственное сопротивление прохождению воздуха. Суммировав тепловое сопротивление всех слоев, мы получим тепловое сопротивление всей стены. Также ели просуммировать сопротивление прохождению воздуха всех слоев, можно понять, как дышит стена. Самая лучшая стена из бруса должна быть эквивалентна стене из бруса толщиной 15 – 20 антиметров. Приведенная далее таблица поможет в этом.

Таблица сопротивления теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Тнар.=–20 °С. Твнутр.=20 °С.)


Слой стены

Толщина
слоя
стены

Сопротивление
теплопередаче слоя стены

Сопротивл.
Воздухопро­
ницаемости
эквивалентно
брусовой стене
толщиной
(см)

Ro.

Эквивалент
кирпичной
кладке
толщиной
(см)

Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 сантиметров
25 сантиметров
50 сантиметров
75 сантиметров

Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / м 3
1400 кг / м 3
1800 кг / м 3

Пено- газобетон толщиной 30 см
плотностью:

300 кг / м 3
500 кг / м 3
800 кг / м 3

Брусовал стена толщиной (сосна)

10 сантиметров
15 сантиметров
20 сантиметров

Для полной картины теплопотерь всего помещения нужно учитывать

  1. Потери тепла через контакт фундамента с мерзлым грунтом, как правило принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, которые связаны с вентиляцией. Данные потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объём свежего воздуха. Таким образом, потери которые связаны с вентиляцией будут составлять немного меньше чем сумма теплопотерь приходящиеся на ограждающие конструкции. Выходит, что теплопотери через стены и остекление составляет только 40%, а теплопотери на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение теплопотерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 – 20 сантиметров то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%. поэтому полученную при расчете величину теплового сопротивления стены необходимо умножить на 1.3 (или соответственно уменьшить теплопотери).

Суммировав все теплопотери дома, Вы сможете понять какой мощности котел и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, подобные расчеты покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Выполнить расчет расхода тепла можно и по укрупненным показателям. Так, в 1-2 этажных не очень утепленных домах при наружной температуре –25 °С необходимо 213 Вт на 1 м 2 общей площади, а при –30 °С – 230 Вт. Для хорошо утепленных домов – этот показатель будет составлять: при –25 °С – 173 Вт на м 2 общей площади, а при –30 °С – 177 Вт.

Расчёт теплопотерь через ограждающие конструкции

Представленный теплотехнический расчет ограждающих конструкций зданий является оценочным и предназначен для предварительного выбора материалов и проектирования конструкций.

При разработке проекта для проведения точного расчета необходимо обратиться в организацию, обладающую соответствующими полномочиями и разрешениями.

  • СНиП 23-02-2003 “Тепловая защита зданий”
  • СП 23-101-2004 “Проектирование тепловой защиты зданий”
  • ГОСТ Р 54851—2011 “Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче”
  • СТО 00044807-001-2006 “Теплозащитные свойства ограждающих конструкций зданий”

Добавьте ссылку на расчет в закладки:
Ссылка на расчет

Или скопируйте ее в буфер обмена:

Москва (Московская область, Россия)
Основные климатические параметры
Температура холодной пятидневки с обеспеченностью 0.92 -26 ˚С
Продолжительность отопительного периода 204 суток
Средняя температура воздуха отопительного периода -2.2 ˚С
Относительная влажность воздуха наиболее холодного месяца 84 %
Условия эксплуатации помещения
Количество градусо-суток отопительного периода (ГСОП) 4528.8 °С•сут
Средние месячные и годовые значения температуры и парциального давления водяного пара
Месяц Т, ˚С E, гПа Месяц Т, ˚С E, гПа
Январь -7.8 3.3 Июль 19.1 15.7
Февраль -6.9 3.3 Август 17.1 14.6
Март -1.3 4.3 Сентябрь 11.3 10.9
Апрель 6.5 6.6 Октябрь 5.2 7.5
Май 13.3 10 Ноябрь -0.8 5.2
Июнь 17 13.3 Декабрь -5.2 3.9
Год 5.6 8.2
  • Температура холодной пятидневки с обеспеченностью 0.92 – при расчете приведенного сопротивления теплопередаче и температуры внутренних поверхностей ограждающих конструкций.
  • Продолжительность отопительного периода и средняя температура воздуха отопительного периода – при расчете тепловых потерь.
  • Условия эксплуатации помещения – определяют коэффициент теплопроводности материала в зависимости от влажностного режима помещения.
  • Количество градусо-суток отопительного периода (ГСОП) – при определении значения требуемого приведенного сопротивления теплопередаче.
  • Средние месячные и годовые значения температуры и парциального давления водяного пара – при расчете защиты отпереувлажнения ограждающей конструкции.
Жилое помещение (Стена)

Вариант “Ненормированное помещение” предназначен для эмуляции расчетов с климатическими параметрами помещений, выходящими за рамки гигиенических норм.

Расчеты при выборе этого варианта не могут расцениваться, как соответсвующие нормам, а результаты, полученные при проведении этих расчетов, не могут быть основанием для принятия того или иного проектного решения.

Влажность в помещении* ϕ %
Коэффициент зависимости положения наружной поверхности по отношению к наружному воздуху n
Коэффициент теплоотдачи внутренней поверхности α(int)
Коэффициент теплоотдачи наружной поверхности α(ext)
Нормируемый температурный перепад Δt(n) °С
* – параметр используется при расчете раздела “Защита от переувлажнения ограждающих конструкций” (см. закладку “Влагонакопление”).
  • Помещение – определяет значение влажности, используемое при определении условий эксплуатации помещения, и диапазоны, в пределах которых можно выбрать температуру внутри помещения.
  • Тип конструкции – необходимо для выбора параметров, определяющих нормирование требуемых уровней тепловой защиты и защиты от переувлажнения.
Слои конструкции
Конструкция
Тип Материалы Толщина, мм λ μ (Rп) Управление
Внутри
Снаружи
Вставить слой Информация
  • Конструкция– в таблицу добавляются материалы, составляющие слои выбранной ограждающей конструкции. Для выбранных слоев можно определить тип из следующих вариантов:
    • Однородный – слой, состоящий из одного материала, без теплопроводных включений.
    • Неоднородный – слой, в котором есть теплопроводные включения, влияние которых определяется коэффициентом односродности. Значения этого коэффициента обычно представлены в специальных справочных таблицах.
    • Каркас – слой с деревянным каркасом. Возможно задание ширины каркаса и шага между его элементами.
    • Перекрестный каркас – слой с деревянным каркасом, расположенном перепендикулярно основному каркасу.
    • Кладка – слой состоящий из штучных элементов кладки и швов с раствором. Возможно задание геометрических размеров элементов кладки и толщины швов.
    • Перемещение слоя – при наличии нескольких слоев возможо их перемещение относительно друг друга. Кнопки “Переместить внутрь” и “Переместить наружу”.
    • Включение выключение слоя – позволяет на время не учитывать слой в расчетах, не удаляя его из конструкции. Кнопка “Включить слой” “Выключить слой”
    • Редактирование параметров материала – если требуемого матерала нет в справочнике материалов, то можно выбрать другой материал и во всплывающем окне задать требуемые параметры. Кнопка “Изменить характеристики”.
    • Удаление слоя – удаляет слой из ограждающей конструкции. Кнопка “Удалить слой”.
    Внутри: 20°С (55%) Снаружи: -10°С (85%)
    • Температура внутри помещения – при определении тепловых потерь через ограждающую конструкцию.
    • Влажность внутри помещения – для помещения с типом “Ненормированное” при определение защиты от переувлажнения..
    Слои конструкции (изнутри наружу)
    Тип Толщина Материал λ R Тmax Тmin
    Термическое сопротивление Rа
    Термическое сопротивление Rб
    Термическое сопротивление ограждающей конструкции
    Сопротивление теплопередаче ограждающей конструкции [R]
    Требуемое сопротивление теплопередаче
    Санитарно-гигиенические требования [Rс]
    Нормируемое значение поэлементных требований [Rэ]
    Базовое значение поэлементных требований [Rт]
    Координата плоскости максимального увлажнения X мм
    Сопротивление паропроницанию от внутренней поверхности конструкции до плоскости максимального увлажнения Rп(в) (м²•ч•Па)/мг
    Сопротивление паропроницанию от плоскости максимального увлажнения до внешней поверхности конструкции Rп(н) (м²•ч•Па)/мг
    Условие недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации Rп.тр(1) (м²•ч•Па)/мг
    Условие ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха Rп.тр(2) (м²•ч•Па)/мг
    Сопротивление паропроницанию конструкции Rп (м²•ч•Па)/мг
    Требуемое сопротивление паропроницанию Rп.тр (м²•ч•Па)/мг
    Слои конструкции (изнутри наружу)
    Толщина Материал μ Rп X Rп(в) Rп.тр(1) Rп.тр(2)
    Потери тепла через 1 м² за один час при сопротивлении теплопередаче (Вт•ч)
    Сопротивление теплопередаче R ±R, % Q ±Q, Вт•ч
    Санитарно-гигиенические требования [Rс]
    Нормируемое значение поэлементных требований [Rэ]
    Базовое значение поэлементных требований [Rт]
    Сопротивление теплопередаче ограждающей конструкции [R]
    R + 10%
    R + 25%
    R + 50%
    R + 100%

    Актуализация данных климатологии (СП 131.13330.2020) Внесены изменения в БД климатических параметров для России в соответствии с вступившим в действие СП 131.13330.2020 .

    Актуализация климатических параметров для Казахстана Внесены изменения в БД климатических параметров для Казахстана в соответствии с действующими нормативными документами .

    Актуализация в соответствии с норматиными документами Актуализированы изменения в СП 50.13330.2012 и СП 131.13330.2018 .

    Добавлены проекты Добавлены возможности хранения ссылок на расчеты и расчета тепловых потерь здания.

    Добавлен калькулятор тепловой защиты полов по грунту Калькулятор позволяет рассчитать уровень тепловой защиты и тепловые потери полов по грунту.

    Запущена новая версия сайта 24.03.2017 После тестирования запущена новая версия сайта. Возможны проблемы из-за “застрявших” в кэше старых скриптов. Рекомендуется их перезагрузка. В большинстве браузеров это Ctrl-F5

    Открыта группа “В контакте” В социальной сети “В контакте” открыта группа, посвященная проекту СмартКалк.

    Актуализация климатических параметров Внесены изменения в БД климатических параметров для России и Казахстана в соответствии с действующими нормативными документами .

    Сохраняем свой материал в ссылке Добавлена возможность сохранять в ссылке материалы с измененными пользователем параметрами .

    Для исследователей и экспериментаторов Для экспериментаторов, исследователей и вообще всех, кому спокойно не сидится на месте, добавлен тип помещения: “Ненормированное” .

    Расширен функционал управления слоями конструкции В целях удобства работы с калькулятором добавлена возможность временного отключения слоев конструкции .

    Пенофол, термофол, теплофол и другие. Здесь Вы найдете ответы на вопросы:
    – Почему в справочнике нет материала “Пенофол” (“Термофол”, “Теплофол” . )?
    – Как быть, если в моей конструкции используется такой материал?

    Расчет каркасных конструкций Как рассчитать каркасную конструкцию?
    Какие варианты каркасов можно использовать в калькуляторе?

    Расчета теплопотерь через ограждающие конструкции

    Формула для расчета теплопотерь через ограждающие конструкции:

    Qorp = K • F • Δ t • n

    где К— коэффициент теплопередачи, Вт/(м 2 •К) (приложение 5 или расчетные показатели);

    F площадь каждого огражде­ния, м 2 ;

    n поправочный коэффициент, учиты­вает расположение ограждения по отношению к наружному воздуху. Для чердачных помещений c асбестоцементной кровлей n=0,8; с кровлей из рулонных материалов n=0,9; для стен и перекрытия, отделяющие отапливаемые помещения от неотапливаемых, не сообщающихся с наружным воздухом (приложение 7).

    tвн. — температура внутреннего воздуха (расчетная), °С, (приложение 13 );

    tнар — температу­ра наружного воздуха (расчетная), °С, (приложение 10 );

    Теплопотери через полы определяют по условным коэффици­ентам теплопотерь (К полов). Так, теплопотери через неутепленные полы, расположен­ные на грунте, определяют по зонам шириной 2 м, считая зоны от наружных стен. По углам 1 зоны ( 4 квадрата сечением 2 м ×2 м)расчет ведется полностью, а по остальным зонам с минусом 2 м по поперечным и продольным направлениям.

    Теплопотери через полы на лагах определяют по методике не­утепленных полов, но условный коэффици­ент теплопотерь (К полов). умножают на 0,8 (80 % теплопотерь от неутепленных полов). Для остальных конст­рукций коэффициенты теплопередачи находят расчетным путем, как указано выше.

    Расчет теплопотерь через ограждающие конструктивные элементы здания оформить в виде таблицы (см. приложение 12).

    Дополнительные потери теплоты зависят от ориентации ограж­дений по отношению к сторонам света, обдувания ветром, проду­ваемости, поступления холодного воздуха через наружные двери ворота при их открывании, инфильтрации воздуха.

    Для упрощения расчетов дополнительные теплопотери прини­мают в размере 10 – 13 % основных теплопотерь через вертикальные ограждающие конструктивные элементы здания ( стены, окна, двери и ворота). Коэффициенты теплопередачи окон и дверей приведены в приложении 5.

    Расчет теплопотерь на нагрев вентиляционного воздуха

    Теплопотери на вентиляцию Qвент. ( Вт) определяют по фор­муле

    Qвент. = 0,278 • Lmax. • ρ • c • Δ t ,

    где L max.— часовой объем вентиляции, рассчитанный на удаление влажности или углекислоты в зим­ний период, м 3 /ч;

    ρ — плотность наружного воздуха при расчетной температуре, кг/м 3 ;

    с удельная теплоемкость воздуха, равна 1,01 кДж/(кг 0 К);

    0,278 – коэф­фициент для перевода кДж в Вт.

    Для упрощения расчетов используем коэффициент объемной теп­лоемкости воздуха [1, 01 кДж/(кг 0 К)] 1,250 кг/м 3 = 1,25 кДж • (м 3 0 К). Тогда формула примет следующий вид:

    Qвент. = = 0,278 • Lmax. • 1,25 • Δ t

    Расчет теплопотерь на испарение влаги

    Теплопотери на испарение влаги с влажных ограждающих поверхностей Qисп.определяют по формуле:

    Qисп. = 0,278 • 2,3 • Wисп.

    где 2,3 — коэффициент, показывающий расход теплоты на испарение 1 г воды с поверхности, кДж/г;

    Wисп.— поступление влаги влажных ограждающих поверхностей (для уп­рощения расчетов ее берут в размере 10—25 % от влаги, выделяемой животными при дыхании и испарении (см. приложение 9).

    0,278 – коэф­фициент для перевода кДж в Вт.

    Расчет теплового баланса здания

    Тепловой баланс Δ Q рассчитывается по формуле

    где: Qж. – свободное тепло, выделяемое всеми животными, содержащимися в помещении, Вт;

    Qвент – потери тепла на нагрев вентиляционного воздуха до оптимальной температуры, Вт;

    Qогр – потери тепла через ограждающие конструкции, Вт;

    Qдоп – затраты тепла за счет обдувания ветром, Вт.

    Qисп – потери тепла на испарение влаги с ограждающих конструкций, Вт.

    6.2.6 Расчет Δ t нулевого теплового баланса здания

    Данный расчет необходим для расчета предельной низкой тем­пературы наружного воздуха, при которой возможна беспрерывная работа системы вентиляции без подогрева.

    Δ t нулевого баланса = (Qж – Q исп) / (0,278 • Lmax. • 1,25 + Σ K • F)

    где L max.— часовой объем вентиляции, рассчитанный на удаление влажности или углекислоты в зим­ний период, м 3 /ч;

    0,278 – коэф­фициент для перевода кДж в Вт .

    Qж — количество теплоты, выделяемой животными, Вт

    Q исп – теплопотери на испарение влаги с влажных ограждающих поверхностей.

    Для определения структуры теплопотерь расчетные данные оформить в виде табл. 11 , сделать заключение.

    Структура теплопотерь коровника

    В целях обеспечения положительного теплового баланса и поддержания нормального температурно-влажностного режима необ­ходимо проведение следующих мероприятий:

    – максимальное утепление ограждающих конструкций, прежде всего чердачных и совмещенных перекрытий эффективными теплоизо­ляционными материалами: минераловатные плиты и маты, пенопласт, шлак, керамзит, опил;

    – увеличение теплоизоляции стен за счет дополнительной штукатурки наружной поверхности;

    – тщательная заделка швов, трещин;

    – применение двойного остекления с дополнительным утепле­нием полиэтиленовой пленкой со стороны помещения, тщательная заделка пространств между оконными блоками и стеной, рамами;

    – снижение теплопотерь за счет обдувания ветром можно дос­тигнуть оптимальным озеленением территорий животноводческих предприятий;

    – снижением часового объема вентиляции до минимальных ве­личин;

    – установкой дополнительных источников поступления тепла – теплогенераторов, отопительно-вентиляционных агрегатов и др.

    Для пересчета экономической эффективности применения ис­точников тепла следует исходить из того, что энергия корма, со­держащаяся в 1 к. ед., способствует образованию 1200 ккал (5024 кДж, 1396 Вт)свободного тепла, 1 кг дизельного топлива – 12000 ккал тепла (50240 кДж, 13960 Вт), 1 кВт электрической энергии – 860 ккал тепла(3600 кДж, 1000 Вт).

    Задание.

    По данным приложения 27 (по индивидуальным заданиям) провести расчет теплового баланса и дельта t нулевого теплового баланса помещения, дать зоогигиеническую оценку полученных расчетных параметров и разработать мероприятия по снижению теплопотерь, оптимизации микроклимата.

    Расчёт теплопотерь через ограждающие конструкции

    ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ

    THERMAL PERFORMANCE OF THE BUILDINGS

    Дата введения 2013-07-01

    Предисловие

    Сведения о своде правил

    1 ИСПОЛНИТЕЛЬ – Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук (НИИСФ РААСН)

    2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 “Строительство”

    3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

    5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)

    Информация об изменениях к настоящему актуализированному своду правил публикуется в ежегодно издаваемом информационном указателе “Национальные стандарты”, а текст изменений и поправок – в ежемесячно издаваемых информационных указателях “Национальные стандарты”. В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе “Национальные стандарты”. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте разработчика (Минрегион России) в сети Интернет

    ВНЕСЕНА опечатка, опубликованная в официальном издании (М.: Минрегион России, 2012 год)

    Опечатка внесена изготовителем базы данных

    Изменение N 1 внесено изготовителем базы данных по тексту М.: Стандартинформ, 2018

    Введение

    Настоящий свод правил разработан с целью повышения уровня безопасности людей в зданиях и сооружениях и сохранности материальных ценностей в соответствии с Федеральным законом от 30 декабря 2009 г. N 384-ФЗ “Технический регламент о безопасности зданий и сооружений”, повышения уровня гармонизации нормативных требований с европейскими и международными нормативными документами, применения единых методов определения эксплуатационных характеристик и методов оценки.

    В разработке настоящего документа принимали участие: канд. техн. наук Н.П.Умнякова, д-р техн. наук В.Г.Гагарин, кандидаты техн. наук В.В.Козлов, И.Н.Бутовский (НИИСФ РААСН), канд. техн. наук Е.Г.Малявина (МГСУ), канд. техн. наук О.А.Ларин (ОАО “КТБ ЖБ”), канд. техн. наук B.C.Беляев (ОАО ЦНИИЭП жилища).

    Изменение N 1 к СП 50.13330.2012 подготовлено авторским коллективом НИИСФ РААСН (д-р техн. наук В.Г.Гагарин, канд. техн. наук В.В.Козлов, канд. техн. наук А.Ю.Неклюдов, канд. техн. наук П.П.Пастушков, канд. техн. наук Д.Ю.Желдаков, канд. техн. наук Н.П.Умнякова).

    1 Область применения

    Настоящий свод правил распространяется на проектирование тепловой защиты строящихся или реконструируемых жилых, общественных, производственных, сельскохозяйственных и складских зданий общей площадью более 50 м (далее – зданий), в которых необходимо поддерживать определенный температурно-влажностный режим.

    Нормы не распространяются на тепловую защиту:

    жилых и общественных зданий, отапливаемых периодически (менее трех дней в неделю) или сезонно (непрерывно менее трех месяцев в году);

    временных зданий, находящихся в эксплуатации не более двух отопительных сезонов;

    теплиц, парников и зданий холодильников;

    зданий, строений, сооружений, которые в соответствии с законодательством Российской Федерации отнесены к объектам культурного наследия (памятникам истории и культуры);

    строений и сооружений в составе инженерного обеспечения объекта – трансформаторные подстанции, котельные, КНС, ВНС, ЦТП и т.д.

    Уровень тепловой защиты указанных зданий устанавливается соответствующими нормами, а при их отсутствии – по решению собственника (заказчика) при соблюдении санитарно-гигиенических норм.

    Настоящие нормы при строительстве и реконструкции существующих зданий, имеющих архитектурно-историческое значение, применяются в каждом конкретном случае с учетом их исторической ценности на основании решений органов власти и согласования с органами государственного контроля в области охраны памятников истории и культуры.

    2 Нормативные ссылки

    В настоящем своде правил использованы нормативные ссылки на следующие документы:

    ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

    ГОСТ 8736-2014 Песок для строительных работ. Технические условия

    ГОСТ 10832-2009 Песок и щебень перлитовые вспученные. Технические условия

    ГОСТ 24816-2014 Материалы строительные. Метод определения равновесной сорбционной влажности

    ГОСТ 25820-2014 Бетоны легкие. Технические условия

    ГОСТ 26253-2014 Здания и сооружения. Метод определения теплоустойчивости ограждающих конструкций

    ГОСТ 30494-2011 Здания жилые и общественные. Параметры микроклимата в помещениях

    ГОСТ 32496-2013 Заполнители пористые для легких бетонов. Технические условия

    ГОСТ Р 33929-2016* Полистиролбетон. Технические условия

    * Вероятно, ошибка оригинала. Следует читать: ГОСТ 33929-2016. – Примечание изготовителя базы данных.

    СП 60.13330.2016 “СНиП 41-01-2003 Отопление, вентиляция и кондиционирование воздуха”

    СП 106.13330.2012 “СНиП 2.10.03-84 Животноводческие, птицеводческие и звероводческие здания и помещения” (с изменением N 1)

    СП 109.13330.2012 “СНиП 2.11.02-87 Холодильники” (с изменениями N 1, 2)

    СП 118.13330.2012 “СНиП 31-06-2009 Общественные здания и сооружения” (с изменениями N 1, 2)

    СП 131.13330.2012 “СНиП 23-01-99* Строительная климатология” (с изменениями N 1, 2)

    СП 230.1325800.2015 Конструкции ограждающие зданий. Характеристики теплотехнических неоднородностей (с изменением N 1)

    СП 345.1325800.2017 Здания жилые и общественные. Правила проектирования тепловой защиты

    СанПиН 2.1.2.2645-10 Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях

    СанПиН 2.2.4.548-96 Гигиенические требования к микроклимату производственных помещений

    Примечание – При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования – на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю “Национальные стандарты”, который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя “Национальные стандарты” за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

    3 Термины и определения

    В настоящем своде правил применены следующие термины с соответствующими определениями:

    3.1 влажностное состояние ограждающей конструкции: Состояние ограждающей конструкции, характеризующееся влажностью материалов, из которых она состоит.

    3.2 влажностный режим помещения: Совокупность состояний влажности воздуха в помещении.

    3.3 воздухопроницаемость ограждающей конструкции: Физическое явление, заключающееся в фильтрации воздуха в ограждающей конструкции, вызванной перепадом давления воздуха. Физическая величина, численно равная массе воздуха усредненной по площади поверхности ограждающей конструкции, прошедшего через единицу площади поверхности ограждающей конструкции при наличии перепада давления воздуха.

    3.4 защита от переувлажнения ограждающей конструкции: Мероприятия, обеспечивающие влажностное состояние ограждающей конструкции, при котором влажность материалов, ее составляющих, не превышает нормируемых значений.

    3.5 зона влажности района строительства: Характеристика района территории Российской Федерации, на котором осуществляется строительство, с точки зрения влажности воздуха и выпадения осадков.

    3.6 класс энергосбережения: Характеристика энергосбережения здания, представленная интервалом значений удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания, измеряемая в процентах от базового нормируемого значения.

    3.7 коэффициент остекленности фасада здания: Отношение площадей светопроемов к суммарной площади наружных ограждающих конструкций фасада здания, включая светопроемы.

    3.8 коэффициент теплотехнической однородности фрагмента ограждающей конструкции: Безразмерный показатель, численно равный отношению значения приведенного сопротивления теплопередаче к условному сопротивлению теплопередаче фрагмента ограждающей конструкции.

    микроклимат помещения: Состояние внутренней среды помещения, оказывающее воздействие на человека, характеризуемое показателями температуры воздуха и ограждающих конструкций, влажностью и подвижностью воздуха.

    оптимальные параметры микроклимата помещений: Сочетание значений показателей микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают нормальное тепловое состояние организма при минимальном напряжении механизмов терморегуляции и ощущение комфорта не менее чем у 80% людей, находящихся в помещении.

    3.11 отапливаемый объем здания: Объем, ограниченный внутренними поверхностями наружных ограждений здания – стен, покрытий (чердачных перекрытий), перекрытий пола первого этажа или пола подвала при отапливаемом подвале.

    3.12 показатель компактности здания: Отношение общей площади внутренней поверхности наружных ограждающих конструкций здания к заключенному в них отапливаемому объему.

    3.13 приведенное сопротивление теплопередаче фрагмента ограждающей конструкции: Физическая величина, характеризующая усредненную по площади плотность потока теплоты через фрагмент теплозащитной оболочки здания в стационарных условиях теплопередачи, численно равная отношению разности температур по разные стороны фрагмента к усредненной по площади плотности потока теплоты через фрагмент.

    3.14 продолжительность отопительного периода: Расчетный период времени работы системы отопления здания, представляющий собой среднее статистическое число суток в году, когда средняя суточная температура наружного воздуха устойчиво равна и ниже 8°С или 10°С в зависимости от вида здания.

    3.15 расход тепловой энергии на отопление и вентиляцию за отопительный период: Суммарное количество тепловой энергии, необходимое для отопления и вентиляции объекта в течение отопительного периода.

    Расчет теплопотерь дома через ограждающие конструкции и инженерные коммуникации

    измерение теплопотерь дома

    Проектирование системы отопления «на глазок» с большой вероятностью может привести либо к неоправданному завышению расходов на ее эксплуатацию, либо к недогреву жилища.

    Чтобы не случилось ни того ни другого, необходимо в первую очередь грамотно выполнить расчет теплопотерь дома.

    И только на основании полученных результатов подбирается мощность котла и радиаторов. Наш разговор пойдет о том, каким способом производятся эти вычисления и что при этом нужно учитывать.

    Разновидности теплопотерь

    Авторы многих статей сводят расчет теплопотерь к одному простому действию: предлагается умножить площадь отапливаемого помещения на 100 Вт. Единственное условие, которое при этом выдвигается, относится к высоте потолка — она должна составлять 2,5 м (при других значениях предлагается вводить поправочный коэффициент).

    На самом деле такой расчет является настолько приблизительным, что полученные с его помощью цифры можно смело приравнивать к «взятым с потолка». Ведь на удельную величину теплопотерь влияет целый ряд факторов: материал ограждающих конструкций, наружная температура, площадь и тип остекления, кратность воздухообмена и пр.

    как уходит тепло

    Более того, даже для домов с различной отапливаемой площадью при прочих равных условиях ее значение будет разным: в маленьком доме — больше, в большом — меньше. Так проявляется закон квадрата-куба.

    Поэтому владельцу дома крайне важно освоить более точную методику определения теплопотерь. Такой навык позволит не только подобрать отопительное оборудование с оптимальной мощностью, но и оценить, к примеру, экономический эффект от утепления. В частности, можно будет понять, превзойдет ли срок службы теплоизолятора период его окупаемости.

    Первое, что необходимо сделать исполнителю — разложить общие теплопотери на три составляющие:

    • потери через ограждающие конструкции;
    • обусловленные работой вентиляционной системы;
    • связанные со сбросом нагретой воды в канализацию.

    Рассмотрим каждую из разновидностей подробно.

    базальт

    Базальтовый утеплитель — популярный теплоизолятор, но ходят слухи о его вреде для здоровья человека. Базальтовый утеплитель — вредность и экологическая безопасность.

    Как правильно утеплить стены квартиры изнутри без вреда для конструкции здания, читайте тут.

    Холодная кровля мешает создать уютную мансарду. В статье вы узнаете, как утеплить потолок под холодной крышей и какие материалы самые эффективные.

    Расчет теплопотерь

    Вот как следует производить вычисления:

    Теплопотери через ограждающие конструкции

    энергоэффективность дома

    Для каждого материала, входящего в состав ограждающих конструкций, в справочнике или предоставленном производителем паспорте находим значение коэффициента теплопроводности Кт (единица измерения — Вт/м*градус).

    Для каждого слоя ограждающих конструкций определяем термическое сопротивление по формуле: R = S/Кт, где S – толщина данного слоя, м.

    Для многослойных конструкций сопротивления всех слоев нужно сложить.

    Определяем теплопотери для каждой конструкции по формуле Q = (A / R) *dT,

    • А — площадь ограждающей конструкции, кв. м;
    • dT — разность наружной и внутренней температур.
    • dT следует определять для самой холодной пятидневки.

    Теплопотери через вентиляцию

    вентиляция дома

    Для этой части расчета необходимо знать кратность воздухообмена.

    В жилых зданиях, возведенных по отечественным стандартам (стены являются паропроницаемыми), она равна единице, то есть за час должен обновиться весь объем воздуха в помещении.

    В домах, построенных по европейской технологии (стандарт DIN), при которой стены изнутри застилаются пароизоляцией, кратность воздухообмена приходится увеличивать до 2-х. То есть за час воздух в помещении должен обновиться дважды.

    Теплопотери через вентиляцию определим по формуле:

    Qв = (V*Кв / 3600) * р * с * dT,

    • V — объем помещения, куб. м;
    • Кв — кратность воздухообмена;
    • Р — плотность воздуха, принимается равной 1,2047 кг/куб. м;
    • С — удельная теплоемкость воздуха, принимается равной 1005 Дж/кг*С.

    Приведенный расчет позволяет определить мощность, которую должен иметь теплогенератор системы отопления. Если она оказалась слишком высокой, можно сделать следующее:

    приточка в частном доме

    • понизить требования к уровню комфорта, то есть установить желаемую температуру в наиболее холодный период на минимальной отметке, допустим, в 18 градусов;
    • на период сильных холодов понизить кратность воздухообмена: минимально допустимая производительность приточной вентиляции составляет 7 куб. м/ч на каждого обитателя дома;
    • предусмотреть организацию приточно-вытяжной вентиляции с рекуператором.

    Заметим, что рекуператор полезен не только зимой, но и летом: в жару он позволяет сэкономить произведенный кондиционером холод, хотя и работает в это время не столь эффективно, как в мороз.

    Правильнее всего при проектировании дома выполнить зонирование, то есть назначить для каждого помещения свою температуру исходя из требуемого комфорта. К примеру, в детской или комнате пожилого человека следует обеспечить температуру порядка 25-ти градусов, тогда как для гостиной будет достаточно и 22-х. На лестничной площадке или в помещении, где жильцы появляются редко либо имеются источники тепловыделения, расчетную температуру можно вообще ограничить 18-ю градусами.

    Очевидно, что цифры, полученные в данном расчете, актуальны только для очень короткого периода — самой холодной пятидневки. Чтобы определить общий объем энергозатрат за холодный сезон, параметр dT нужно вычислять с учетом не самой низкой, а средней температуры. Затем нужно выполнить следующее действие:

    W = ((Q + Qв) * 24 * N)/1000,

    • W — количество энергии, требующейся для восполнения теплопотерь через ограждающие конструкции и вентиляцию, кВт*ч;
    • N — количество дней в отопительном сезоне.

    Однако, данный расчет окажется неполным, если не будут учтены потери тепла в канализационную систему.

    Теплопотери через канализацию

    замер теплопотерь

    Для приема гигиенических процедур и мытья посуды жильцы дома греют воду и произведенное тепло уходит в канализационную трубу.

    Но в данной части расчета следует учитывать не только прямой нагрев воды, но и косвенный — отбор тепла осуществляет вода в бачке и сифоне унитаза, которая также сбрасывается в канализацию.

    Исходя из этого, средняя температура нагрева воды принимается равной всего 30-ти градусам. Теплопотери через канализацию рассчитываем по следующей формуле:

    Qк = (Vв * T * р * с * dT) / 3 600 000,

    • Vв — месячный объем потребления воды без разделения на горячую и холодную, куб. м/мес.;
    • Р — плотность воды, принимаем р = 1000 кг/куб. м;
    • С — теплоемкость воды, принимаем с = 4183 Дж/кг*С;
    • dT — разность температур. Учитывая, что вода на входе зимой имеет температуру около +7 градусов, а среднюю температуру нагретой воды мы условились считать равной 30-ти градусам, следует принимать dT = 23 градуса.
    • 3 600 000 — количество джоулей (Дж) в 1-м кВт*ч.

    Пример расчета теплопотерь дома

    тепло в доме

    Рассчитаем теплопотери 2-этажного дома высотой 7 м, имеющего размеры в плане 10х10 м.

    Стены имеют толщину 500 мм и выстроены из теплой керамики (Кт = 0,16 Вт/м*С), снаружи утеплены минеральной ватой толщиной 50 мм (Кт = 0,04 Вт/м*С).

    В доме имеется 16 окон площадью по 2,5 кв. м.

    Наружная температура в самую холодную пятидневку составляет -25 градусов.

    Средняя наружная температура за отопительный период — (-5) градусов.

    Внутри дома требуется обеспечить температуру +23 градуса.

    Потребление воды — 15 куб. м/мес.

    Продолжительность отопительного периода — 6 мес.

    Определяем теплопотери через ограждающие конструкции (для примера рассмотрим только стены)

    тепло уходит через стену

    Термическое сопротивление:

    • основного материала: R1 = 0,5 / 0,16 = 3,125 кв. м*С/Вт;
    • утеплителя: R2 = 0,05/0,04 = 1,25 кв. м*С/Вт.

    То же для стены в целом: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м*С/Вт.

    Определяем площадь стен: А = 10 х 4 х 7 – 16 х 2,5 = 240 кв. м.

    Теплопотери через стены составят:

    Qс = (240 / 4.375) * (23 – (-25)) = 2633 Вт.

    Аналогичным образом рассчитываются теплопотери через крышу, пол, фундамент, окна и входную дверь, после чего все полученные значения суммируются. Термическое сопротивление дверей и окон производители обычно указывают в паспорте на изделие.

    Обратите внимание на то, что при расчете теплопотерь через пол и фундамент (при наличии подвала) разность температур dT будет намного меньшей, так как при ее вычислении учитывается температура не воздуха, а грунта, который зимой является гораздо более теплым.

    Теплопотери через вентиляцию

    Определяем объем воздуха в помещении (для упрощения расчета толщина стен не учитывается):

    V = 10х10х7 = 700 куб. м.

    Принимая кратность воздухообмена Кв = 1, определяем теплопотери:

    Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-25)) = 11300 Вт.

    воздухообмен в помещении

    Вентиляция в доме

    Теплопотери через канализацию

    С учетом того, что жильцы потребляют 15 куб. м воды в месяц, а расчетный период составляет 6 мес., теплопотери через канализацию составят:

    Qк = (15 * 6 * 1000 * 4183 * 23) / 3 600 000 = 2405 кВт*ч

    электроконвектор

    Если вы не живете в дачном домике зимой, в межсезонье или в холодное лето необходимо все равно его обогревать. Электрическое отопление дачного дома в данном случае бывает самым целесообразным.

    О причинах падения давления в системе отопления вы можете почитать в этом материале. Устранение неполадок.

    Оценка полного объема энергозатрат

    Для оценки всего объема энергозатрат за отопительный период необходимо пересчитать теплопотери через вентиляцию и ограждающие конструкции с учетом средней температуры, то есть dT составит не 48, а только 28 градусов.

    Тогда средняя мощность потерь через стены составят:

    Qс = (240 / 4.375) * (23 – (-5)) = 1536 Вт.

    Предположим, что через крышу, пол, окна и двери дополнительно теряется в среднем 800 Вт, тогда совокупная средняя мощность теплопотерь через ограждающие конструкции составит Q = 1536 + 800 = 2336 Вт.

    Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-5)) =6592 Вт.

    Тогда за весь период на отопление придется затратить:

    W = ((2336 + 6592)*24*183)/1000 = 39211 кВт*ч.

    К этой величине нужно прибавить 2405 кВт*ч потерь через канализацию, так что общий объем энергозатрат за отопительный период составит 41616 кВт*ч.

    Если в качестве энергоносителя используется только газ, из 1-го куб. м которого удается получить 9,45 кВт*ч тепла, то его понадобится 41616 / 9,45 = 4404 куб. м.

    Видео на тему

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: