Расчет кирпичной стены на устойчивость

ВВЕДЕНИЕ

Решение проблемы защиты жилых зданий, строящихся в Москве, в случаях возникновения чрезвычайных ситуаций (ЧС) 1 , в соответствии с директивными и нормативными документами должно учитывать природные и техногенные чрезвычайные ситуации, определенные соответствующими ГОСТ. Однако учет природных особенностей Московского региона и уроков многочисленных аварий зданий и сооружений в России и за рубежом 2 показывает, что перечень ЧС, рассматриваемых при таком анализе, должен быть существенно уточнен и расширен по сравнению с гостируемым. В него необходимо включить следующие чрезвычайные ситуации:

1 Здесь и в дальнейшем курсивом выделяются термины и сокращения, определенные в госстандартах.

2 Библиография строительных аварий чрезвычайно обширна, весьма подробная библиография аварий жилых зданий во второй половине 20 века – в [20].

1. Природные ЧС:

A) – сейсмические воздействия;

Б) – опасные метеорологические явления, приводящие к повышенным ветровым нагрузкам на здания;

B) – образование карстовых воронок и провалов в основаниях зданий;

2. Антропогенные (в т.ч. техногенные) ЧС 3 :

3 Термин «антропогенные ЧС», применяемый в литературе, представляется более общим, чем гостируемый «техногенные ЧС» – в частности, это иллюстрирует приводимый здесь перечень ЧС.

А) – взрывы снаружи или внутри здания (в литературе упоминаются следующие источники: бытовой газ, взрывоопасные газовые смеси и жидкости, бомбы и другие взрывные устройства, используемые террористами);

Б) – пожары 4 ;

4 Пожары могут быть отнесены и к природным ЧС, но чаще они возникают по причинам, связанным с деятельностью людей.

В) – транспортные аварии (ДТП, авиационные катастрофы);

Г) – аварии зданий и сооружений или значительные повреждения их несущих конструкций, вызванные одной из следующих причин:

а) ошибки в проектах, в том числе вызванные несовершенством СНиП,

б) недоброкачественное производство работ (на заводе или на монтаже);

в) дефекты материалов;

г) недостатки эксплуатации зданий, в том числе их инженерного оборудования;

д) небрежность, некомпетентность, а иногда и случаи вандализма жильцов, технического персонала или посторонних посетителей здания (в частности, самовольная перепланировка квартир с ослаблением несущих конструкций).

Указанные в приведенном перечне источники ЧС, по аналогии с классификацией взрывов на производстве, здесь разделены на проектные и запроектные. Защита зданий при ЧС, вызванных проектными источниками, определяется соответствующими СНиП, защита зданий при ЧС, вызванных запроектными источниками, требует специального анализа, конечная цель которого – разработка соответствующих норм и перевод рассматриваемых ЧС из разряда запроектных в категорию проектных Основная цель настоящих рекомендаций – обеспечение безопасности московских жилых зданий при запроектных ЧС.

Как показывает анализ чрезвычайных ситуаций, перечисленных выше, [19] наиболее вероятные для московских условий запроектные ЧС сводятся к локальным аварийным воздействиям на отдельные конструкции одного здания: взрывы, пожары, карстовые провалы, ДТП, дефекты конструкций и материалов, аварии инженерных систем здания, некомпетентная реконструкция и т.п. Это случайные, в общем случае непредсказуемые, нештатные ситуации, указанные в п. п. 1 В, 2 вышеприведенного перечня ЧС.

Как правило, воздействия рассматриваемого типа приводят к местным повреждениям несущих конструкций зданий. При этом в одних случаях ЧС этими первоначальными повреждениями и исчерпываются, а в других – несущие конструкции, сохранившиеся в первый момент аварии, не выдерживают дополнительной нагрузки, ранее воспринимавшейся поврежденными элементами, и тоже разрушаются. Аварии последнего типа получили в литературе наименование “прогрессирующее обрушение”.

Термин “прогрессирующее обрушение” и формулировка проблемы защиты от него панельных зданий появились в 1968 г. в докладе комиссии, расследовавшей причины известной аварии 22-этажного панельного жилого дома «Роунан Пойнт» в Лондоне [1]. После публикации доклада практически во всех развитых странах были начаты исследования этой проблемы, и к концу 70-х годов анализ возможных средств защиты от прогрессирующего обрушения зданий различных конструктивных систем с учетом экономических критериев был в основном завершен. Основные выводы, полученные разными исследователями, и последовавшие за ними изменения норм проектирования особенно для панельных зданий большинства развитых стран оказались схожи. Для конструкций различных систем зданий основные рекомендации сводились к следующему.

1. Не отказываясь в принципе от профилактических мер, направленных на предупреждение локальных ЧС или возникающих при них аварийных воздействий, самое серьезное внимание следует уделить предупреждению прогрессирующего обрушения. Это вызвано, во-первых, тем, что никакими экономически оправданными мерами невозможно полностью исключить возможность локальных разрушений несущих конструкций зданий, во-вторых, тем, что прогрессирующее обрушение ведет к наиболее тяжелым последствиям, в-третьих, тем, что при сравнительно небольших местных разрушениях несущих конструкций зданий обеспечение их устойчивости против прогрессирующего обрушения позволяет предотвратить эти последствия и защита может быть достигнута простыми и не дорогостоящими техническими средствами.

2. Основной принцип предотвращения прогрессирующего обрушения – повышение неразрезности конструктивной системы здания посредством совершенствования стыков и связей между конструктивными элементами.

Читайте также:
Снегозадержатели на крышу цена

3. Эффективность конструктивной защиты зависит от развития в элементах конструкций и их связях пластических деформаций; для пластичности связей, в частности, требуется, чтобы прочность анкеровки связей в сборных элементах была «соответствующей», т.е. больше несущей способности самой связи, или больше усилий, вызывающих текучесть связи.

4. Отмечается качественное сходство рекомендуемых мер защиты от прогрессирующего обрушения с апробированными конструктивными антисейсмическими мероприятиями. В литературе приводятся многочисленные примеры сейсмостойких зданий, локальные разрушения которых не привели к прогрессирующему обрушению благодаря соответствующей сейсмозащите.

Настоящие рекомендации, основанные на указанных принципах, рассматривают вопросы защиты при локальных ЧС для жилых зданий с несущими кирпичными стенами. Вопросы, рассмотренные в настоящих Рекомендациях, в той или иной мере ранее рассматривались, необходимость разработки данных рекомендаций появилась после ужесточения противопожарных требований [12]. Пожары являются частным случаем ЧС. Мероприятия по выполнению требований противопожарных норм защищают отдельные элементы здания только от воздействия пожара, а в случае других ЧС могут оказаться бесполезными. Поэтому в московских нормах [13] было принято положение о необходимости защиты здания в целом от прогрессирующего обрушения (п. 3.6) при ЧС любого типа, а требования по огнестойкости отдельных конструктивных элементов (п. 3.24) трактуются с учетом защищенности здания от прогрессирующего обрушения.

Рекомендации составлены на основе анализа обширной научной и нормативной зарубежной литературы и по результатам научных исследований проблемы защиты зданий от прогрессирующего обрушения, выполненных в МНИИТЭП, и разработаны в развитие Московских городских норм [13].

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ.

1.1. Жилые здания первой и второй категории ответственности с кирпичными 5 несущими стенами должны быть защищены от прогрессирующего (цепного) обрушения в случае локального разрушения их несущих конструкций при аварийных воздействиях, не предусмотренных условиями нормальной эксплуатации зданий (взрывы, пожары, ударные воздействия транспортных средств и т.п.). Это требование означает, что в случае аварийных воздействий допускаются локальные разрушения несущих конструкций (полное или частичное разрушение отдельных стен в пределах одного этажа и двух смежных осей здания), но эти первичные разрушения не должны приводить к обрушению или к разрушению конструкций, на которые передается нагрузка, ранее воспринимавшаяся элементами, поврежденными аварийным воздействием.

5 Здесь и далее имеется в виду не только кирпичные стены, но и из других каменных материалов в соответствии с [7, 22].

Конструктивная система здания должна обеспечивать его прочность и устойчивость в случае локального разрушения несущих конструкций как минимум на время, необходимое для эвакуации людей. Перемещение конструкций и раскрытие в них трещин в рассматриваемой чрезвычайной ситуации не ограничивается.

1.2. При проектировании защиты зданий с кирпичными несущими стенами от прогрессирующего обрушения следует выделять два типа неповрежденных конструктивных элементов. В элементах первого типа воздействия локальных разрушений не вызывают качественного изменения напряженного состояния, а приводят лишь к увеличению напряжений и усилий (неповрежденные участки стен и плиты перекрытий, не расположенные над локальным разрушением). В элементах второго типа (к ним относятся конструкции, потерявшие первоначальные опоры – элементы стен и перекрытий, расположенные над локальным разрушением) в рассматриваемом состоянии здания качественно меняется напряженное состояние.

В связи с тем, что элементы первого типа при нормальных эксплуатационных воздействиях подвергаются нагрузкам в два-три раза ниже разрушающих, основной задачей проектирования является обеспечение прочности и устойчивости элементов стен и перекрытий, потерявших опору в результате локального разрушения стен. Обеспечение устойчивости этих конструкций, которая зависит как от прочности самих зависших элементов, так и от прочности их связей между собой и с неповрежденными стенами, – основная задача защиты зданий от прогрессирующего обрушения

1.3. Устойчивость здания против прогрессирующего обрушения следует обеспечивать наиболее экономичными средствами:

– конструктивными мерами, способствующими развитию в элементах и их соединениях пластических деформаций при предельных нагрузках;

– рациональным решением системы конструктивных связей, отдельных узлов и элементов соединений и стыков.

1.4. Реконструкция здания (в частности, перепланировка квартир с устройством новых проемов), не должна снижать устойчивости здания против прогрессирующего обрушения.

2. РАСЧЕТ ЗДАНИЙ С КИРПИЧНЫМИ НЕСУЩИМИ СТЕНАМИ НА УСТОЙЧИВОСТЬ ПРОТИВ ПРОГРЕССИРУЮЩЕГО ОБРУШЕНИЯ.

2.1. Устойчивость здания против прогрессирующего обрушения проверяется расчетом на особое сочетание нагрузок и воздействий, включающее постоянные и временные длительные нагрузки, а также воздействие гипотетических локальных разрушений несущих конструкций.

2.2. Величины нагрузок должны определяться по [11]. При этом коэффициенты сочетаний нагрузок и коэффициенты надежности по нагрузке следует принимать равными единице.

Рекомендуется принимать следующие размеры локальных повреждений:

Рис. 1. Фрагмент кирпичного жилого дома

1 – армированные пояса, 2 – варианты расположения гипотетических локальных разрушений.

· карстовая воронка под фундаментом здания диаметром 6 м (для карстоопасных районов);

Читайте также:
Свайное поле: подбор, подготовка проекта и возведение

· разрушение (удаление) двух пересекающихся стен одного (любого) этажа на участках от места их сопряжения (в частности, от угла здания) до ближайшего проема в каждой стене или до следующего пересечения со стеной перпендикулярного направления, но на длине не более 3 м;

· исчезновение любого из простенков наружной стены;

· исчезновение любого из участков стены одного этажа шириной 3 м;

· повреждение сборного или монолитного перекрытия общей площадью до 40 м 2 ;

Для оценки устойчивости здания против прогрессирующего обрушения разрешается рассматривать лишь наиболее опасные расчетные схемы разрушения:

локальные разрушения, включающие разрушение наружных стен, ослабленных дверными проемами выходов на балконы и лоджии;

локальные разрушения, включающие разрушения простенков внутренних стен между двумя дверными проемами при балочной разрезке большепролетных сборных перекрытий.

2.4. При расчете зданий на устойчивость против прогрессирующего обрушения расчетные сопротивления кладки, арматуры и прокатной стали, а также нормативные сопротивления бетона принимаются в соответствии с [ 7 – 9 ]. Расчетные сопротивления бетонных и железобетонных конструкций, определяемые делением нормативных сопротивлений на коэффициенты надежности, повышают за счет использования коэффициентов надежности по материалу, указанных в табл. 1 . Кроме того, расчетные сопротивления умножают на коэффициенты условий работы, учитывающие малую вероятность аварийных воздействий и интенсивный рост прочности бетона в первый период после возведения здания, а также возможность использования арматуры и металлических элементов за пределом текучести материала. Коэффициенты условий работы для кирпичной кладки и бетона принимают по таблице 2 , для арматуры всех классов вводится единый коэффициент g s = 1,1. Коэффициент условий работы g s для пластичных сталей принимается равным 1,1.

Как рассчитать стены из кладки на устойчивость

Чтобы выполнить расчет стены на устойчивость, нужно в первую очередь разобраться с их классификацией (см. СНиП II -22-81 «Каменные и армокаменные конструкции», а также пособие к СНиП) и понять, какие бывают виды стен:

1. Несущие стены – это стены, на которые опираются плиты перекрытия, конструкции крыши и т.п. Толщина этих стен должна быть не менее 250 мм (для кирпичной кладки). Это самые ответственные стены в доме. Их нужно рассчитывать на прочность и устойчивость.

2. Самонесущие стены – это стены, на которые ничто не опирается, но на них действует нагрузка от всех вышележащих этажей. По сути, в трехэтажном доме, например, такая стена будет высотой в три этажа; нагрузка на нее только от собственного веса кладки значительная, но при этом очень важен еще вопрос устойчивости такой стены – чем стена выше, тем больше риск ее деформаций.

3. Ненесущие стены – это наружные стены, которые опираются на перекрытие (или на другие конструктивные элементы) и нагрузка на них приходится с высоты этажа только от собственного веса стены. Высота ненесущих стен должна быть не более 6 метров, иначе они переходят в категорию самонесущих.

4. Перегородки – это внутренние стены высотой менее 6 метров, воспринимающие только нагрузку от собственного веса.

Разберемся с вопросом устойчивоcти стен.

Первый вопрос, возникающий у «непосвященного» человека: ну куда может деться стена? Найдем ответ с помощью аналогии. Возьмем книгу в твердом переплете и поставим ее на ребро. Чем больше формат книги, тем меньше будет ее устойчивость; с другой стороны, чем книга будет толще, тем лучше она будет стоять на ребре. Со стенами та же ситуация. Устойчивость стены зависит от высоты и толщины.

Теперь возьмем наихудший вариант: тонкую тетрадь большого формата и поставим на ребро – она не просто потеряет устойчивость, но еще и изогнется. Так и стена, если не будут соблюдены условия по соотношению толщины и высоты, начнет выгибаться из плоскости, а со временем – трещать и разрушаться.

Что нужно, чтобы избежать такого явления? Нужно изучить п.п. 6.16. 6.20 СНиП II -22-81.

Рассмотрим вопросы определения устойчивости стен на примерах.

Пример 1. Дана перегородка из газобетона марки М25 на растворе марки М4 высотой 3,5 м, толщиной 200 мм, шириной 6 м, не связанная с перекрытием. В перегородке дверной проем 1х2,1 м. Необходимо определить устойчивость перегородки.

Из таблицы 26 (п. 2) определяем группу кладки – III . Из таблиц ы 28 находим ? = 14. Т.к. перегородка не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 9,8.

Находим коэффициенты k из таблиц ы 29:

k 1 = 1,8 – для перегородки, не несущей нагрузки при ее толщине 10 см, и k 1 = 1,2 – для перегородки толщиной 25 см. По интерполяции находим для нашей перегородки толщиной 20 см k 1 = 1,4;

k3 = 0,9 – для перегородки с проемами;

Читайте также:
Основные виды энергосберегающих ламп и их характеристики

Окончательно β = 1,26*9,8 = 12.3.

Найдем отношение высоты перегородки к толщине: H / h = 3,5/0,2 = 17,5 > 12.3 – условие не выполняется, перегородку такой толщины при заданной геометрии делать нельзя.

Каким способом можно решить эту проблему? Попробуем увеличить марку раствора до М10, тогда группа кладки станет II , соответственно β = 17, а с учетом коэффициентов β = 1,26*17*70% = 15 < 17,5 - этого оказалось недостаточно. Увеличим марку газобетона до М50, тогда группа кладки станет I , соответственно β = 20, а с учетом коэффициентов β = 1,26*20*70% = 17.6 >17,5 – условие выполняется. Также можно было не увеличивая марку газобетона, заложить в перегородке конструктивное армирование согласно п. 6.19. Тогда β увеличивается на 20% и устойчивость стены обеспечена.

Пример 2. Дана наружная ненесущая стена из облегченной кладки из кирпича марки М50 на растворе марки М25. Высота стены 3 м, толщина 0,38 м, длина стены 6 м. Стена с двумя окнами размером 1,2х1,2 м. Необходимо определить устойчивость стены.

Из таблицы 26 (п. 7) определяем группу кладки – I . Из таблиц ы 28 находим β = 22. Т.к. стена не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 15,4.

Находим коэффициенты k из таблиц ы 29:

k 1 = 1,2 – для стены, не несущей нагрузки при ее толщине 38 см;

k2 = √А n / Ab = √1,37/2,28 = 0,78 – для стены с проемами, где Ab = 0,38*6 = 2,28 м 2 – площадь горизонтального сечения стены с учетом окон, А n = 0,38*(6-1,2*2) = 1,37 м 2 ;

Окончательно β = 0,94*15,4 = 14,5.

Найдем отношение высоты перегородки к толщине: H / h = 3/0,38 = 7,89 < 14,5 - условие выполняется.

Необходимо также проверить условие, изложенное в п. 6.19:

Еще полезные статьи:

профили арматуру не заменят

насчет фундамента: допустимы пустоты в теле бетона, но не снизу, чтобы не уменьшать площадь опирания, которая отвечает за несущую способность. То есть снизу должен быть тонкий слой армированного бетона.
А какой фундамент – лента или плита? Какие грунты?

жаль, вообще просто пишут что в легких бетонах (керамзитобетон) плохая связь с арматурой – как с этим бороться? я так понимаю чем прочнее бетон и чем больше площадь поверхности арматуры – тем лучше будет связь, т.е. надо керамзитобетон с добавлением песка (а не только керамзит и цемент) и арматуру тонкую, но чаще

насчет фундамента: допустимы пустоты в теле бетона, но не снизу, чтобы не уменьшать площадь опирания, которая отвечает за несущую способность. То есть снизу должен быть тонкий слой армированного бетона.
А какой фундамент – лента или плита? Какие грунты?

Груны пока не известны, вероятнее всего будет чистое поле суглинки всякие, изначально думал плиту, но низковато выйдет, хочется по-выше, а ещё же придётся верхний плодородный слой снимать, поэтому склоняюсь к ребристому или даже коробчатому фундаменту. Несущей способности грунта много мне не надо – дом всё-таки решили в 1 этаж, да и керамзитобетон не очень тяжёлый, промерзание там не более 20 см (хотя по старым советским нормативам 80).

Думаю снять верхний слой 20-30 см, выложить геотекстиль, засыпать песочком речным и разровнять с уплотнением. Затем легкая подготовительна я стяжка – для выравнивая (в неё вроде бы даже арматуру не делают, хотя не уверен), поверх гидроизоляция праймером
а дальше вот уже диллема – даже если связать каркасы арматуры ширина 150-200мм х 400-600мм высоты и уложить их с шагом в метр, то надо ещё пустоты чем-то сформировать между этими каркасами и в идеале эти пустоты должны оказаться поверх арматуры (да ещё и с некоторым расстоянием от подготовки, но при этом сверху их тоже надо будет проармировать тонким слоем под 60-100мм стяжку) – думаю ППС плиты замонолитить в качестве пустот – теоретически можно будет такое залить в 1 заход с вибрированием.

Т.е. как бы с виду плита 400-600мм с мощным армированием каждые 1000-1200мм объемная структура единая и легким в остальных местах, при этом внутри примерно 50-70% объёма будет пенопласт (в не нагруженных местах) – т.е. по расходу бетона и арматуры – вполне сравнимо с плитой 200мм, но + куча относительно дешового пенопласта и работы больше.

Если как-то бы ещё заменить пенопласт на простой грунт/песок – будет ещё лучше, но тогда вместо легкой подготовки разумнее делать нечто более серьёзное с армированием и выносом арматуры в балки – в общем тут не хватает мне и теории и практического опыта.

Вернёмся пока к стенам, тут вычитал ещё интересный вариант tilt-up
на фундаменте отливается прямо стена с утелпением сразу (в утеплении есть углубления для армирования, т.е. слой бетона не везде одинаковый, как бы та же ребристая структура)

Читайте также:
Натяжные потолки: что это такое, определение и виды термина

я думаю заменить тяжёлый бетон 50-150 мм, на керамзитобетон заводской 150-250 мм 1000-1200кг/м3 – арматурный каркас там из 12й арматуры в прорези между утеплителем (шаг 1м в утолщениях стены), а по внутренней стене дополнительно кладочную сетку 6ку вроде с шагом 100мм

потом это ставится уже краном (свариваются, скручиаются выносы арматуры) а стыки и углы монолитятся и утепляются отдельно (в стыках из плиты и потом в перекрытие отдельно арматура закладывается)

немного смущает слабая связь стен с фундаментом (только по стыкам и углам), но при монолитном перекрытии – это вроде как достаточно жестко, можно в фундаменте и стеновых плитах сделать закладные и сварить до кучи

Как Вам такая технология? Несущая стена получится 150мм с утолщениями до 250мм из керазитобетона M50 с умеренным армированием

жаль, вообще просто пишут что в легких бетонах (керамзитобетон) плохая связь с арматурой – как с этим бороться? я так понимаю чем прочнее бетон и чем больше площадь поверхности арматуры – тем лучше будет связь, т.е. надо керамзитобетон с добавлением песка (а не только керамзит и цемент) и арматуру тонкую, но чаще

зачем с этим бороться? нужно просто учитывать в расчете и при конструировании. Понимаете, керамзитобетон – достаточно хороший стеновой материал со своим списком достоинств и недостатков. Как и любые другие материалы. Вот если бы вы захотели использовать его для монолитного перекрытия, я бы вас отговаривала, потому что
Цитата:

а значит будут проблемы в растянутой зоне плиты и в местах анкеровки арматуры.

Для стен же, тем более для одноэтажного дома, керамзитобетон вполне подходит. Конечно, нужно соблюсти все нормативные требования для лёгких бетонов.

стяжка не армируется

почитал СНИП по легким бетонам, там довольно интересные есть моменты.
1. похоже можно делать керамзитобетон без мелкого наполнителя, я думаю использовать 10-20
2. есть разные сорта керамзита по прочности, и требования для каждой марки керамзитобетона

Класс бетона по прочности на сжатие – Минимальная марка заполнителя по прочности

При этом я вижу что для фракции 10-20 есть варианты керамзита как П25 (дешового 250кг/м3), так и П50 – более дорогой и у него насыпная плотность уже 400кг/м3

т.е. в принципе можно получить относительно дорогой конструкционно- теплоизоляционн ый D600 – D700 M100-B7.5 из которого даже относительно тонким слоем при качественном армировании можно хоть в 3-4 этажа лепить

а можно получить дешовый D500 M50-B3.5 на 1-2 этажа хватит и такого за глаза, даже если будет пирог 120мм-100 ППС-80мм с армированием по 1 слою в обоих слоях керамбитобетона , связанных стеклоплатсиков ой арматурой между собой (как только это посчитать – не понятно, одиночной стены в 120мм мало, но учитывая что пенопласт будет не сплошным слоем, а с шагом в метр будут рёбра из чистого керамзитобетона с армированием, т.е. рёбра в 300мм толщиной по сути)
я думаю прочности тут с большим запасом (скидка на качество изготовления самомесом, но планирую вибрировать поверхностным вибратором, плиты будут отливаться на фундаменте горизонтально с выносом арматуры для связи плит, и через неделю подниматься – размер плиты 1.1-1.2 х 2.4-3 м вес примерно 300-400кг всего, стыки плит будут заливаться отдельно тем же керамзитобетоном)

Ещё есть мысль закупить б/у труб d50 и в плите в слое 120мм их замуровать с шагом 600мм с выносом, чтобы потом за них поднимать было удобно тельфером на полтонны думаю справиться, но и под них сделать дырки в фундаменте и поставить трубами в дырки + потом сверху будет перекрытие с армпоясом одновременно на всю 120мм часть стеновой плиты – эти трубы там замонолитить.

Расчет наружной кирпичной стены толщиной 250 мм на прочность и устойчивость

расчет наружной кирпичной стены

Данный расчет представляет собой проверку несущей наружной стены дома по проекту SDT-172-2K.G.

1. Исходные данные

Регион строительства: г. Москва

Длина стены (L): 8,03 м.

Высота стены (H): 3,01 м.

Толщина стены (t): 0,25 м.

Кирпич для кладки: полнотелый керамический кирпич размером 250х120х65 мм марки М150.

Раствор для кладки: цементно-песчаный раствор марки М50.

Армирование кладки: не предусмотрено (в проекте арматурная сетка заложена, но в расчете это учитываться не будет).

Требуется рассчитать стену 1 этажа в осях 1/А-Б на прочность.

план 1 этажа

Рис. 1. План 1 -го этажа

план 2 этажа

Рис. 2. План 2-го этажа

разрез 1-1

2. Сбор нагрузок

сбор нагрузок на наружную кирпичную стену

Рис. 4. Таблица сбора нагрузок с перекрытий и крыши

3. Расчет

Расчет производится на 1 погонный метр стены согласно разделу 7 СП 15.13330.2012 «Каменные и армокаменные конструкции».

Читайте также:
Ремонт радиаторов охлаждения автомобилей в домашних условиях

3.1. Расчет наружной несущей стены на прочность

Расчет стены на прочность производим для самой нагруженной наружной стены. В нашем случае это стена в осях 1/А-Б.

расчетные сечения

Рис. 5. Расчетная схема

Определение полной нагрузки, которая действует на 1 пог.м кладки под перекрытием 1 этажа:

N = G + Pкр + P1 + P2 = 1,60 т + 0,77 т + 2,28 т + 0,40 т = 5,05 т,

G = 2,97 м * 1 м * 0,25 м * 1,8 т / м 3 * 1,1 + 0,2 м * 0,25 м * 1 м * 2,5 т/м 3 * 1,1 = 1,47 т + + 0,13 т = 1,60 т – вес кладки выше перекрытия 1 этажа;

Pкр = 0,24 т/м 2 * 3,2 м * 1 м = 0,77 т – полная расчетная нагрузка от крыши;

P1 = 1,00 т/м 2 * 2,275 м * 1 м = 2,28 т – полная расчетная нагрузка от перекрытия 1 этажа.

P2 = 0,175 т/м 2 * 2,275 м * 1 м = 0,40 т – полная расчетная нагрузка от перекрытия 2 этажа.

Определение места приложения нагрузки от перекрытия 1 этажа:

e1 = 120 мм / 3 = 40 мм

В проекте плита перекрытия 1-го этажа опирается на всю толщину стены. Для данного расчета же возьмем более худший вариант – предположим, что плита опирается на 120 мм, т. е. величина, а = 120 мм.

В связи с этим продольная сила P1 от перекрытия будет действовать на расстоянии 40 мм (120*1/3 – центр тяжести эпюры напряжений в виде треугольника).

Определение места приложения нагрузки от вышележащих этажей:

е2 = 250 мм / 2 = 125 мм

Нагрузка от вышележащих этажей G приложена по центру стены.

Определение эксцентриситета расчетной силы N относительно центра тяжести сечения:

e = e2 – e1 = 125 мм – 40 мм = 85 мм = 8,5 см.

3.1.1. Расчет по сечению 1-1

Данный расчет осуществляется для глухих стен, где расчетное сечение находится на уровне низа перекрытия 1-го этажа. В этом сечение действует продольная сила N и максимальный изгибающий момент М.

Определение изгибающего момента:

M = P1 * e = 2,30 т * 8,5 см = 19,38 т*см

Определение эксцентриситета продольной силы N:

e00 = М / N = 19,38 т*см / 5,05 т = 3,84 см

Определение общего эксцентриситета:

ev – величина случайного эксцентриситета равная 2 см, принятая согласно п. 7.9, так как толщина стены 250 мм.

Проверка необходимости в расчете по раскрытию трещин в швах кладки согласно п. 7.8:

y = t / 2 = 250 мм / 2 = 125 мм = 12,5 см.

Расчет по раскрытию трещин в швах кладки не требуется.

Определение прочности кладки внецентренно сжатого элемента:

N ≤ mg * φ1 * R * Ac * ω = 1 * 0,79 * 0,018 т/см 2 * 1332 см 2 * 1,242 = 23,52 т.

формула 1

φ = 1 – коэффициент продольного изгиба для всего сечения в плоскости действия изгибающего момента, принятый согласно п. 7.4.

φс = 0,58 – коэффициент продольного изгиба для сжатой части сечения, определяемый по фактической высоте элемента Н по таблице 19 в плоскости действия изгибающего момента при отношении:

tc = t – 2e = 25 см – 2 * 5,84 см = 13,32 см.

Для определения φс также требуется знать упругую характеристику α, которая в свою очередь находится по таблице 17 в зависимости от вида кладки и марки раствора. В нашем случае α = 1000.

mg = 1 – коэффициент, учитывающий влияние длительной нагрузки, принятый согласно п. 7.4.

R = 1,8 Мпа = 18 кг/см 2 = 0,018 т/см 2 – расчетное сопротивление кладки сжатию, определяемое по таблице 2 в зависимости от марки кирпича М150 и марки раствора М50.

Ac = 1332 см 2 – площадь сжатой части сечения, определяемая по формуле:

формула 3

A = 2500 см 2 – площадь поперечного сечения, которая в нашем случае считается на 1 п.м., определяемая по формуле:

А = L * t = 100 см * 25 см = 2500 см 2

ω = 1,234 – коэффициент, определяемый по формулам, приведенным в таблице 20. В нашем случае данный коэффициент определяется по формуле:

формула 4

Вывод: прочность наружной стены толщиной 250 мм из керамического кирпича марки М150 на цементно-песчаном растворе марки М50 в расчетном сечении I-I обеспечена без дополнительного армирования сетками.

3.1.2 Расчет по сечению 2-2

Данный расчет выполняется в месте, где действует момент 2/3М. Бывают случаи, когда именно это сечение оказывается критичным из-за минимальных коэффициентов mg и φ.

Определение продольной силы с учетом кладки:

N = G + Gкл + Pкр + P1 + P2= 1,60 т + 0,5 т + 0,77 т + 2,28 т + 0,40 т = 5,55 т,

Так как сечение 2-2 находится на расстоянии Н/3 от перекрытия 1-го этажа, то нам необходимо к общей нагрузке прибавить еще вес кладки между сечениями 1-1 и 2-2. Определяем его по следующей формуле:

формула 5

ρ = 1,8 т/м 3 – плотность кладки;

L1 = 1 м – длина 1 погонного метра стены;

γf = 1,1 – коэффициент надежности по нагрузке.

Pкр = 0,24 т/м 2 * 3,2 м * 1 м = 0,77 т – полная расчетная нагрузка от крыши;

Читайте также:
Ошибки при монтаже электропроводки

P1 = 1,00 т/м 2 * 2,275 м * 1 м = 2,28 т – полная расчетная нагрузка от перекрытия 1 этажа.

P2 = 0,175 т/м 2 * 2,275 м * 1 м = 0,40 т – полная расчетная нагрузка от перекрытия 2 этажа.

Определение изгибающего момента:

формула 6

Определение эксцентриситета продольной силы N:

e00 = М / N = 12,92 т*см / 5,55 т = 2,33 см

Определение общего эксцентриситета с учетом случайного:

Проверка необходимости в расчете по раскрытию трещин в швах кладки согласно п. 7.8:

Расчет по раскрытию трещин в швах кладки не требуется.

Определение прочности кладки внецентренно сжатого элемента на расстоянии 2/3Н:

N ≤ mg1 * R *Ac * ω = 0,956 * 0,875 * 0,018 т/см 2 * 1634 см 2 * 1,173 = 28,86 т.

формула 7

φ = 0,92 – определяется по таблице 19 в зависимости от гибкости элемента:

l = 2,01 м = 201 см – расчетная высота (длина) элемента, определяемая согласно указаниям 7.3. В нашем случае l = 2H/3.

Коэффициент α = 1000 (не меняется, так как кладка та же).

φс = 0,83 – определяется по таблице 19 в зависимости от гибкости сжатой части сечения:

формула 9

tc = t – 2e = 25 см – 2 * 4,33 см = 16,34 см.

mg – коэффициент, определяемый по формуле:

формула 10

Ng = G + Gкл + Pкр,g + P1,g + P2,g = 1,60 т + 0,5 т + 0,1 т + 1,84 т + 0,20 т = 4,24 т – расчетная продольная сила от длительных и постоянных нагрузок.

Pкр,g = 0,03 т/м 2 * 3,2 м * 1 м = 0,1 т – расчетная нагрузка от крыши (длительные + постоянные);

P1,g = 0,81 т/м 2 * 2,275 м * 1 м = 1,84 т – полная расчетная нагрузка от перекрытия 1 этажа (длительные + постоянные);

P2,g = 0,084 т/м 2 * 2,275 м * 1 м = 0,20 т – полная расчетная нагрузка от перекрытия 2 этажа (длительные + постоянные).

η = 0,046 – коэффициент, принимаемый по таблице 21;

e0g = 5,05 см – эксцентриситет от продольной силы (длительные + постоянные нагрузки), который в сечении 2-2 равен:

e0g = М / Ng = 12,92 т*см / 4,24 т = 3,05 см

при этом полный эксцентриситет с учетом случайного будет равен:

e0g = e0g + evg = 3,05 см + 2 см = 5,05 см

Ac = 1634 см 2 – площадь сжатой части сечения, определяемая по формуле:

формула 11

ω = 1,173 – коэффициент, определяемый по формулам, приведенным в таблице 20. В нашем случае данный коэффициент определяется по формуле:

формула 12

Вывод: прочность наружной стены толщиной 250 мм из керамического кирпича марки М150 на цементно-песчаном растворе марки М50 в расчетном сечении II-II обеспечена без дополнительного армирования сетками.

3.2. Расчет наружной несущей стены на устойчивость

Расчет кирпичной стены толщиной 250 мм на устойчивость производим для стены в осях 3/А-Б. Расчет производим по разделу 9 СП 15.13330.2016 «Каменные и армокаменные конструкции».

Согласно п. 9.17 должно выполняться условие:

По таблице 27 определяем группу кладки из кирпича марки М150 и раствора марки М50. В данном случае группа кладки – I.

Находим значение отношения H/t:

По таблице 29 определяем значение β. Для данного вида кладки β = 25.

Так как условия отличаются от указанных в п. 9.17, значение β принимаем с учетом поправочного коэффициента k, который приведен в таблице 30.

В свою очередь данный коэффициент является произведением, назовём их, подкоэффициенты, зависящие от характеристик стены. В нашем случае это следующие коэффициенты:

1. Стена с проемами

формула 15

Ab = 803 см * 25 см = 20075 см 2 – площадь брутто определяются по горизонтальному сечению стены;

An = 20075 см2 – (160 см + 120 см) * 25 см = 13075 см 2 – площадь нетто.

Стены и перегородки при свободной их длине между примыкающими поперечными стенами или колоннами от 2,5 до 3,5 H

Определяем общий коэффициент k:

Проверка дополнительных требований:

Коэффициент k должен быть не ниже коэффициента kp, указанного в таблице 31 (для столбов).

Для стены толщиной 25 см и кладки из камней правильной формы kp = 0,6, что меньше 0,726. Значит, окончательно принимаем k = 0,726.

Определение значения β с учетом поправочного коэффициента:

β = 25 * 0,726 = 18,15

Проверка основного условия:

18,15 ≥ 12,04 – условие выполняется.

Вывод: устойчивость наружной стены толщиной 250 мм обеспечена.

Заключение

Наружные стены дома по проекту SDT-172-2K.G удовлетворяют требованиям по прочности и устойчивости.

Расчет кирпичной кладки на устойчивость

raschet-kirpichnoj-steny-na-ustojchivost

В случае самостоятельного проектирования кирпичного дома возникает острая необходимость рассчитать, сможет ли выдержать кирпичная кладка те нагрузки, которые заложены в проекте. Особенно серьёзная ситуация складывается на участках кладки, ослабленных оконными и дверными проёмами. В случае большой нагрузки эти участки могут не выдержать и подвергнуться разрушению.

Точный расчет устойчивости простенка к сжатию вышележащими этажами достаточно сложен и определяется формулами, заложенными в нормативном документе СНиП-2-22-81 (далее ссылка – ). В инженерных расчетах прочности стены к сжатию учитывается множество факторов, включая конфигурацию стены, сопротивление сжатию, прочность данного типа материалов и многое другое. Однако приблизительно, «на глазок», можно прикинуть резистентность стены к сжатию, воспользовавшись ориентировочными таблицами, в которых прочность (в тоннах) увязана в зависимость от ширины стенки, а также марок кирпича и раствора. Таблица составлена для показателя высоты стены 2,8 м.

Читайте также:
Полукоммерческий линолеум

Таблица прочность кирпичной стенки, тонн (пример)

Марки Ширина участка, см
кирпич раствор 25 51 77 100 116 168 194 220 246 272 298
50 25 4 7 11 14 17 31 36 41 45 50 55
100 50 6 13 19 25 29 52 60 68 76 84 92

В случае, если значение ширины простенка находится в интервале между указанными, необходимо ориентироваться на минимальное число. Вместе с тем, следует помнить, что в таблицах учтены не все факторы, которые могут корректировать устойчивость, прочность конструкции и сопротивление кирпичной стенки к сжатию в достаточно широком диапазоне.

Виды нагрузки

По времени нагрузки бывают временные и постоянные.

Постоянные:

  • вес элементов сооружений (вес ограждений, несущих и других конструкций);
  • давление грунтов и горных пород;
  • гидростатическое давление.

Временные:

  • вес временных сооружений;
  • нагрузки от стационарных систем и оборудования;
  • давление в трубопроводах;
  • нагрузки от складируемых изделий и материалов;
  • климатические нагрузки (снеговые, гололёдные, ветровые и т.д.);
  • и многие другие.

При анализе нагруженности конструкций обязательно следует учитывать суммарные эффекты. Ниже приведён пример подсчёта основных нагрузок на простенки первого этажа здания.

Нагруженность кирпичной кладки

Для учёта воздействующей на проектируемый участок стены силы нужно суммировать нагрузки:

raschet-kirpichnoj-steny-na-ustojchivost_1

  • от парапета;
  • подоконных участков;
  • простеночных участков;
  • надоконных участков, с учётом веса кирпичной стенки, строительного раствора и нанесённой штукатурки;
  • нагрузку от покрытия и межэтажных перекрытий;
  • вес кровли;
  • а также временные нагрузки (снеговую, ветровую и т.д.).

В случае малоэтажного строительства задача сильно упрощается, и многими факторами временной нагрузки можно пренебречь, задавая определённый запас прочности на этапе проектирования.

Однако в случае строительства 3 и более этажных сооружений необходим тщательный анализ по специальным формулам, учитывающим сложение нагрузок от каждого этажа, угол приложения силы и многое другое. В отдельных случаях прочность простенка достигается армированием.

Пример расчёта нагрузок

Данный пример показывает анализ действующих нагрузок на простенки 1-го этажа. Здесь учтены только постоянно действующие нагрузка от различных конструкционных элементов здания, с учётом неравномерности веса конструкции и углом приложения сил.

Исходные данные для анализа:

  • количество этажей – 4 этажа;
  • толщина стены из кирпичей Т=64см (0,64 м);
  • удельный вес кладки (кирпич, раствор, штукатурка) М=18 кН/м3 (показатель взят из справочных данных, табл. 19 );
  • ширина оконных проемов составляет: Ш1=1,5 м;
  • высота оконных проемов — В1=3 м;
  • сечение простенка 0,64*1,42 м (нагружаемая площадь, куда приложен вес вышележащих конструктивных элементов);
  • высота этажа Вэт=4,2 м (4200 мм):
  • давление распределено под углом 45 градусов.
  1. Пример определения нагрузки от стены (слой штукатурки 2 см)

Нст=([4Вэт+0,5(Вэт-В1)]3-4Ш1В1)(h+0,02)Мyf = ([4,2*4+0,5*(4,2-3)]*3-4*3*1,5)* (0,02+0,64) *1,1 *18=0, 447МН.

  1. Нагрузка от кровли и трёх перекрытий

Ширина нагруженной площади П=Вэт*В1/2-Ш/2=3*4,2/2,0-0,64/2,0=6 м

Нп =(30+3*215)*6 = 4,072МН

в том числе длительная нагрузка на проектируемый участок

  1. Нагрузка от перекрытий 2-го этажа

в том числе Н2l=(1,26+215*3)*6= 3,878МН

Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН

Общая нагрузка будет результатом сочетания указанных нагрузок на простенки здания, для её подсчета выполняется суммирование нагрузок от стенки, от перекрытий 2второго этажа и веса проектируемого участка).

Схема анализа нагрузки и прочности конструкции

Для подсчета простенка кирпичной стенки потребуются:

  • протяжённость этажа (она же высота участка) (Вэт);
  • число этажей (Чэт);
  • толщина стены (Т);
  • ширина кирпичной стены (Ш);
  • параметры кладки (тип кирпича, марка кирпича, марка раствора);
  • нагрузка (Н)
  1. Площадь простенка (П)
  1. По таблице 15 необходимо определить коэффициент а (характеристика упругости). Коэффициент зависит от типа, марки кирпича и раствора.
  2. Показатель гибкости (Г)
  1. В зависимости от показателей а и Г, по таблице 18 нужно посмотреть коэффициент изгиба ф.
  2. Нахождение высоты сжатой части

где е0 – показатель экстренсиситета.

  1. Нахождение площади сжатой части сечения
  1. Определение гибкости сжатой части простенка
  1. Определение по табл. 18 коэффициент фсж, исходя из Гсж и коэффициента а.
  2. Расчет усредненного коэффициента фср
  1. Определение коэффициента ω (таблица 19 )
  1. Расчет силы, воздействующей на сечение
  2. Определение устойчивости

Кдв – коэффициент длительного воздействия

R – сопротивление кладки сжатию, можно определить по таблице 2 , в МПа

Пример расчета прочности кладки

— параметры кладки (глиняный кирпич, изготовленный методом пластического прессования, цементно-песчаный раствор, марка кирпича — 100, марка раствора — 50)

— нагрузка (Н) – 1000 кН

  1. По таблице 15 определяем коэффициент а.
  1. Коэффициент изгиба (таблица 18 ).
  1. Высота сжатой части
  1. Площадь сжатой части сечения
  1. Гибкость сжатой части
    Расчет силы, воздействующей на сечение
Читайте также:
Основные виды энергосберегающих ламп и их характеристики

Для определения действующей нагрузки необходим расчет веса всех элементов конструкции, оказывающих воздействие на проектируемый участок здания.

  1. Определение устойчивости

Условие выполнено, прочность кладки и прочность её элементов достаточна

Недостаточное сопротивление простенка

Что делать, если расчетное сопротивление простенков давлению недостаточно? В этом случае необходимо укрепление стенки при помощи армирования. Ниже приведён пример анализа необходимой модернизации конструкции при недостаточном сопротивлении сжатию.

Для удобства можно воспользоваться табличными данными.

В нижней строке представлены показатели для стенки, армированной проволочной сеткой диаметра 3 мм, с ячейкой 3 см, класса В1. Армирование каждого третьего ряда.

Марка Ширина, см
кирпич раствор 25 51 77 100 116 142 168 194 220 246 272 298
Простая кладка 100 50 6 13 19 25 29 44 52 60 68 76 84 92
Армированная кладка 100 50 11 23 34 44 51 79 92 107 122 136 151 165

Прирост прочности составляет около 40 %. Обычно данное сопротивление сжатию оказывается достаточным. Лучше сделать подробный анализ, подсчитав изменение прочностных характеристик в соответствии с применяемым способом усиления конструкции.

Ниже приведён пример подобного вычисления

Пример расчета усиления простенков

Исходные данные – см. предыдущий пример.

  • высота этажа — 3,3 м;
  • толщина стены– 0,640 м;
  • ширина кладки 1,300 м;
  • типовые характеристики кладки (тип кирпичей – глиняные кирпичи, изготовленные методом прессования, тип раствора – цементный с песком, марка кирпичей — 100, раствора — 50)

Нагрузка пусть будет равной Н

В этом случае условие У>=Н не выполняется (1,113<1,5).

Требуется увеличить сопротивление сжатию и прочность конструкции.

Коэффициент усиления

т.е. надо увеличить прочность конструкции на 34,8%.

Усиление железобетонной обоймой

Усиление производится обоймой из бетона В15 толщиной 0,060 м. Вертикальные стержни 0,340 м2, хомуты 0,0283 м2 с шагом 0,150 м.

Размеры сечения усиленной конструкции:

При таких показателях условие У>=Н выполняется. Сопротивление сжатию и прочность конструкции достаточны.

Расчет нагрузки на кирпичную стену – пример определения несущей способности конструкции

Проектирование и возведение сооружений из кирпича требует дополнительного расчета нагрузки. Несущая способность кирпичной кладки при неправильной закладке приводит к разрушению стены. Поэтому инженеры с максимальной точностью рассчитывают показатели. Для этого нужно знать марку кирпича по плотности, осуществляемую нагрузку, устойчивость, сопротивление сжатию и теплопередаче.

Виды нагрузок на кирпичную стену

Нагруженность элементов конструкции подразделяют на 2 вида:

К постоянным относят удельную массу перегородок, перестенок, стен и других элементов, а также постоянное влияние подземных вод, горных пород и их гидростатика. Временные, как становится ясно из названия, это сбор нагрузок характерного типа, которые могут изменяться. К ним относят:

  • вес временно привезенного оборудования либо стационарных объектов;
  • разность перепадов давления в проложенных трубах здания;
  • нагрузки климатического характера влияния окружающей среды (снег, дождь, ветер).

Если сооружение проектируется с малым количеством этажей, то строители могут пренебрегать данными касательно временных напряжений на здание, однако только при условии создания повышенного запаса прочности на этапах его строительства.

От чего зависит нагруженность кирпичной кладки?

Для проведения расчета первым делом необходимо определить все факторы, влияющие на прочность участка проектирования, а именно:

  • защитные возвышения по периметру кровли;
  • подоконники;
  • простенки;
  • участки над окнами с учетом полного веса всех составляющих стены;
  • допустимые нагрузки на плиту и между перекрытиями;
  • удельную массу настила;
  • для зимнего периода также учитывают вес снежного покрытия на крыше и влияние сильных порывов ветра.

Для зданий более 2-х этажей проводят расчет для определения способности их сопротивляемости. С помощью формул высчитывают нагрузки от каждого отдельного этажа конструкции и точки давления. Высокие нагрузки образовываются в нижних частях кирпичного столба. Если условия по правильному соотношению величин толщины и высоты не будут выполнены, то с увеличением срока эксплуатации стена начнет выгибаться и может полностью разрушиться от перенапряжения.

В строительной индустрии предусматривается толщина кладки из кирпича для несущих стен от 1,5 до 2,5 изделия. Но окончательное вычисление зависит от высотности объекта. Определяется устойчивость к нагрузкам непосредственно с помощью расчета, но в случае строительства 3 и более этажных зданий нужен тщательный анализ по формулам, которые учитывают сложение нагрузок от каждого этажа, угол приложения силы и возможные дополнительные напряжения.

При планировании конструкции несущего типа материал стоит укладывать не менее, чем в 1,5 камня. Вернуться к оглавлению

Пример расчета нагруженности кирпичной стены

Чтобы разобраться в вопросе нагрузок несущих конструкций, можно изучить пример выполнения проекта, в котором не учитываются временные эксплуатационные нагрузки. Например, здание 4-х этажей с толщиной стен 64 см (Т), удельный вес с учетом всех элементов — кирпича, штукатурки и раствора составляет М=18 кН/м3. По ГОСТу 11214—86, выполнена закладка окон, их размеры по ширине 100—150 см (Ш) по высоте 100—130 см (В).

Читайте также:
Отличия гипсокартона от гипсоволокна

Приложение веса на простенок от элементов, находящихся выше, согласно замерам, равен 0,64*1,42 м, а высота одного этажа (Вэт) 4200 мм. При этом сила давления на участок происходит под углом 45°. При слое штукатурки в 2 см определяют нагрузку от стен следующим алгоритмом: Нстен=(4Вэт+0,5(Вэт-В1)3—4Ш1*В1)(h+0,02)М. Подставив значения, получают 0, 447 МН. Определение требуемой нагруженной площади П=Вэт*В½-Ш/2. В этом случае значение равно 6 м. Нп =(30+3*215)*6 = 4,072МН. Получаемая нагрузка на кладку из кирпича от перекрытий 2-го этажа равняется: Н2=215*6 = 1,290МН, в том числе Н2l=(1,26+215*3)*6= 3,878МН. Удельный вес кирпичного простенка высчитывается по формуле: Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН.

Необходимый показатель для данной конструкции можно вычислить, используя некоторые данные и формулы.

Расчет несущей способности кирпичной стены выполняется по максимально загруженным простенкам нижнего этажа.

При обследовании элемента выбирают части стены с минимальной шириной и толщиной. Чаще всего они расположенными в проемах дверей или окон. Если условие У >= Н на устойчивость стены при расчетах подтверждается, то проект выполнен верно и прочность конструктивных элементов достаточна. Расчет простенка для каждого этажа и суммирование значений показывают общую нагрузку здания и выполняются согласно СНиП II-22—81.

Недостаточное сопротивление стены из кирпича

Если при определении расчетного сопротивления данные устойчивости менее ее нагрузки, следует выполнять армирование стенок и перегородок. При упрочнении материала прирост показателей прочности составляет 40%. Далее следует заново пересчитать показатели устойчивости, учитывая усиление стальными элементами. Зная что У = 1,5, а Н = 1,113, рассчитывается коэффициент усиления, поделив значения, К = 1,348. Таким образом, увеличить прочностные показатели нужно на 34,8%. Проводя армирование железной обоймой, можно достичь нужных показателей прочности, если правильно выбрать марку кирпича, усиление, определить конструкцию фундамента и характеристики грунта под фундаментом.

Расчет кирпичной стены на устойчивость

В случае самостоятельного проектирования кирпичного дома возникает острая необходимость рассчитать, сможет ли выдержать кирпичная кладка те нагрузки, которые заложены в проекте. Особенно серьёзная ситуация складывается на участках кладки, ослабленных оконными и дверными проёмами. В случае большой нагрузки эти участки могут не выдержать и подвергнуться разрушению.

Точный расчет устойчивости простенка к сжатию вышележащими этажами достаточно сложен и определяется формулами, заложенными в нормативном документе СНиП-2-22-81 (далее ссылка – ). В инженерных расчетах прочности стены к сжатию учитывается множество факторов, включая конфигурацию стены, сопротивление сжатию, прочность данного типа материалов и многое другое. Однако приблизительно, «на глазок», можно прикинуть резистентность стены к сжатию, воспользовавшись ориентировочными таблицами, в которых прочность (в тоннах) увязана в зависимость от ширины стенки, а также марок кирпича и раствора. Таблица составлена для показателя высоты стены 2,8 м.

Таблица прочность кирпичной стенки, тонн (пример)

Марки Ширина участка, см
кирпич раствор 25 51 77 100 116 168 194 220 246 272 298
50 25 4 7 11 14 17 31 36 41 45 50 55
100 50 6 13 19 25 29 52 60 68 76 84 92

В случае, если значение ширины простенка находится в интервале между указанными, необходимо ориентироваться на минимальное число. Вместе с тем, следует помнить, что в таблицах учтены не все факторы, которые могут корректировать устойчивость, прочность конструкции и сопротивление кирпичной стенки к сжатию в достаточно широком диапазоне.

Примем марку раствора — «50 и выше», группа кладки — I:

Таким образом, максимальная высота перегородки составляет H = 120 x 25 x 1,72 x 0,9 x 0,7 = 3250 мм. При этом свободная длина перегородки не должна превышать 2,5H = 8100 мм

В соответствии с п.9.19 при конструктивном продольном армировании кладки — коэффициент 1,2. В этом случае максимальная высота перегородки составляет H = 120 x 25 x 1,72 x 0,9 x 0,7 x 1,2 = 3900 мм. При этом свободная длина перегородки не должна превышать 2,5H = 9750 мм

Общий порядок работ

Полнофункциональный калькулятор расчета несущей способности стен способен оценить расходы не только на стройматериалы, но и на строительные работы. Чтобы понять происхождение затрат, нужно представлять, как происходит строительство. Примерный порядок действий:

  1. • Удаление неровностей с поверхности цоколя. Очень важный момент, если проект предусматривает использование блоков.
  2. • Кладка кирпичного или блочного типа, в последовательности от внешних к внутренним стенкам.
  3. • Подготовка проемов дверей и окон, обычно посредством железобетонных перемычек. Для легких стройматериалов создается верхний пояс армирования.
  4. • Облицовка фасада, оформление некоторых элементов экстерьера.
Читайте также:
Ремонт радиаторов охлаждения автомобилей в домашних условиях

Расчеты и результаты

Расчет на внецентренное сжатие, расчет на растяжение, расчет на смятие (местное сжатие), начальный модуля упругости, средний (секущий) модуля упругости, упругая характеристика армированной кладки, коэффициент продольного изгиба, коэффициент запаса прочности, относительные деформации кладки средние кратковременные, относительные деформации ползучести, расчетное армирование сечения, предельная перерезывающая сила, воспринимаемая армированной кладкой, предельный момент, воспринимаемый армированной кладкой, предельная сила сжатия, воспринимаемая армированной кладкой, предельная перерезывающая сила, воспринимаемая неармированной кладкой, предельный момент, воспринимаемый неармированной кладкой, предельная сила сжатия, воспринимаемая неармированной кладкой, проверка заданного усиления кирпичного простенка.

Толщина кирпича, какой кирпич стоит выбрать для строительства

В современном кирпичном строительстве выделяют одинарный, полуторный и двойной кирпич. Размеры одинарного обычного кирпича составляют 250х12х65 мм, он был введен в обиход еще в 1-й половине прошлого века (в 1925 году этот типоразмер был закреплен в нормативной документации). Немного позже стали использоваться полуторные и двойные кирпичи, их размер составляет 250х120х88 и 250х120х138. С точки зрения затрат гораздо эффективнее для наружных стен использовать двойной или полуторный кирпич.

Например, при кладке в 2,5 кирпича оптимальным будет вариант использования двойных кирпичей для кладки стены в 2,0 кирпича и облицовочного кирпича – для кладки оставшихся 0,5 кирпича. Если для того же объема строительства использовать обычный одинарный кирпич, то затраты будут на 25 – 35% выше.

Еще одним важным фактором, влияющим на выбор типа кирпича, является его теплопроводность. По этому параметру кирпич проигрывает многим строительным материалам, например, дереву.

Теплопроводность обычного цельного кирпича составляет порядка 0,6 – 0,7 Вт/м°С, этот показатель можно уменьшить в 2,5 – 3 раза за счет использования пустотелого кирпича. В этом случае кирпич намного хуже проводит тепло, но в то же время снижается его прочность. Поэтому использование пустотелого кирпича для несущих стен возможно не во всех случаях.

Кроме этого, пустотелый кирпич не рекомендуется использовать для строительства фундамента, цокольных и подвальных этажей. Вообще не рекомендуется контакт пустотелого кирпича с водой.

Толщина стены в два кирпича

В каких случаях необходимо толщину стены выполнять в два кирпича? Длина стандартного кирпича – 25 см, соответственно два кирпича – 51 см. В зависимости от толщины стены изменяется и тип используемой кладки. Если местность, где осуществляется строительство сооружения, отличается сильными морозами, а утеплители использоваться не будут – толщина стены в два кирпича самый подходящий вариант.

Качественные характеристики построенного сооружения определяются кирпичной кладкой. От нее зависит термоизоляция, долговечность и надежность конструкции в целом. Толщина стен всегда указывается в проекте, и рассчитывается на основании точных характеристик и факторов, которые влияют на эксплуатацию постройки в дальнейшем.

Нюансы проектирования

Несомненно, для частного объекта безопасность несущих конструкций не менее важна, чем в многоквартирном доме. Поэтому сэкономить на кирпиче в ответственных элементах конструкции не получится. Кроме того, достаточная толщина кирпичной внешней стены важна:

  • для сохранения тепла;
  • звукоизоляции;
  • устойчивости объекта в нестабильных условиях климата и грунта.

Экономия кирпича возможна в первом и втором случае, если использовать бут (строительный «мусор», гравий, битые кирпичи), укладываемые в промежуточное пространство между целыми кирпичами.

Использование мусора в строительных целях

Во всех трех случаях онлайн-калькулятор для кирпичной кладки – важнейший инструмент расчетов.

Подведение итогов

Приведенным выше способом можно произвести расчет объема кладки несущей стены не только в пределах двух кирпичей, но и с учетом того количества, которое вам понадобится.

Кладка стены именно таким образом была выбрана не случайно, т.к. она дает ширину несущей стены в 0,5 м, а это увеличивает способности к влагоотталкиванию, к тому же уменьшает смятие кладки в целом. Единственное, что изменяется в худшую сторону, – это вес самой постройки, т.к. он увеличивает усадку несущей конструкции дома. Любой математический расчет наказывает приобретать кирпичи более высокой марки для несущей конструкции на нижний этаж (марка кирпича обозначает его способность выдерживать вес на 1 см² без потерь).

При необходимости можно подсчитать не только полный объем кирпича по формуле количество/480, но и массу самого кирпича (раствор и прочее высчитывается отдельно): количество*3,54. В итоге объем необходимого кирпича будет равен 112 м³, а общая масса будет равна 189867,9 кг.

Если верно произвести расчет, а потом сопоставить способности кирпича и возможности при строительстве, то смятие несущей конструкции будет сведено к минимуму, а все остальные риски не будут играть роли.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: