Принцип работы плазмотрона для резки металла

Принцип работы плазмореза

Плазменная резка осуществляется аппаратом под названием плазморез. Он создаёт поток высокотемпературного ионизированного воздуха (плазмы), который разрезает заготовку.

Принцип плазменной резки основан на свойстве воздуха в состоянии ионизации становиться проводником электрического тока. Плазморез создаёт в плазмотроне плазму (ионизированный воздух, разогретый до высокой температуры) и сварочную дугу, которые осуществляют раскрой материала.

Устройство плазмореза

Плазморез состоит из нескольких блоков:

  • источник электропитания;
  • плазмотрон (резак);
  • компрессор;
  • комплект кабель-шлангов.

Источник электропитания

Источником электропитания может быть:

  • трансформатор. Достоинством его является то, что он практически не чувствителен к перепадам напряжения электросети и позволяет резать заготовки большой толщины, а недостатком – значительный вес и низкий КПД;
  • инвертор. Единственным его недостатком является то, что он не позволяет резать заготовки большой толщины. Достоинств много:
    • при питании от него стабильно горит дуга;
    • КПД на 30 % выше, чем у трансформатора;
    • дешевле, экономичнее и легче трансформатора;
    • его удобно использовать в труднодоступных местах.

    Принцип работы

    Принцип действия плазмотрона заключается в следующем.

    Создаётся поток высокотемпературного ионизированного воздуха, электропроводность которого равна электропроводности разрезаемой заготовки (т.е. воздух перестаёт быть изолятором и становится проводником электрического тока).

    Образуется электрическая дуга, которая локально разогревает обрабатываемую заготовку: металл плавится и появляется рез. Температура плазмы в этот момент достигает 25000 – 30000 °С. Появляющиеся на поверхности разрезаемой заготовки частички расплавленного металла будут сдуваться с нее потоком воздуха из сопла.

    Технология

    Плазменной обработке поддаются все виды металлов толщиой до 220 мм.

    Эффект появляется после воспламенения плазмообразующего газа при образовании искры в контуре электрической дуги.

    В выходном отверстии от сужения происходит ускорение потока плазмообразующего носителя. Высокоскоростная плазменная струя позволяет получить температуру на выходе около 20000 °С.

    Узконаправленная струя в тысячи градусов буквально проплавляет материал в точечной области воздействия, нагрев вокруг места обработки незначительный.

    Резка плазменной струей

    Раскрой заготовок плазменной струей применяется для обработки материалов, не проводящих электрический ток.

    При резке этим методом дуга горит между формирующим наконечником плазмотрона и электродом, а сам разрезаемый объект в электрической цепи не участвует.

    Для разрезания заготовки используется струя плазмы.

    Плазменно-дуговая резка

    Плазменно-дуговой резкеподвергаются токопроводящие материалы.

    При выполнении резки этим методом дуга горит между разрезаемой заготовкой и электродом, её столб совмещен со струей плазмы.

    Последняя образуется за счет поступления газа, его нагрева и ионизации.

    Газ, продуваемый через сопло, обжимает дугу, придает ей проникающие свойства и обеспечивает интенсивное плазмообразование.

    Высокая температура газа создает высочайшую скорость истечения и увеличивает активное воздействие плазмы на плавящийся металл.

    Газ выдувает из зоны реза капли металла. Для активизации процесса используется дуга постоянного тока прямой полярности.

    Плазменно-дуговая резка применяется при:

    • производстве деталей с прямолинейными и фигурными контурами;
    • вырезании отверстий или проемов в металле;
    • изготовлении заготовок для сварки, штамповки и механической обработки;
    • обработке кромок поковок;
    • резке труб, полос, прутков и профилей;
    • обработке литья.

    Виды плазменной резки

    В зависимости от среды, существуют три вида плазменной резки:

    • простой. Этот метод подразумевает использование только воздуха (или азота) и электрического тока;
    • с защитным газом. Применяются два вида газа: плазмообразующий и защитный, который сохраняет зону реза от влияний окружающей среды. В результате повышается качество реза;
    • с водой. В этом случае вода выполняет функцию, аналогичную защитному газу, охлаждает компоненты плазмотрона и поглощает вредные выделения.
    Видео

    Посмотрите ролики, где наглядно объясняется, как происходит плазменная резка.

    Типы плазмотронов

    Плазмотроны можно условно разделить на три типа:

    1. электродуговые;
    2. высокочастотные;
    3. комбинированные.

    Возможности плазменной резки

    Сфера применения плазменной резки очень разнообразна, благодаря своей универсальности и диапазону обрабатываемых металлов и металлических сплавов. Автоматизированная и ручная плазменная резка материалов широко применяется на предприятиях и во многих отраслях промышленности для выполнения обработки:

    • труб;
    • истового металла;
    • чугуна;
    • стали (в т.ч. нержавеющей);
    • бетона;
    • отверстий;
    • фигурной и художественной резки.

    Как работает аппаратная плазменная резка металла

    • Источник тока выдает необходимое напряжение, а именно: 220 V для небольших устройств, 380 V для промышленных систем, позволяющих работать с материалами большой толщины.
    • Ток по кабелям попадает в плазмотрон. Он оснащен катодом и анодом, роль которых играют электроды. Именно между ними загорается электрическая дуга.
    • Компрессор нагнетает воздух и подает его в аппарат по предусмотренным для этого шлангам. Плазмотрон снабжен специальными завихрителями, которые направляют и закручивают воздух. Поток пронизывает электрическую дугу, при этом ионизирует ее и во много раз повышает температуру, создавая плазму.
    • Когда сварщик-резчик подносит плазмотрон к изделию, получается рабочая дуга – она замыкается между электродом и поверхностью. За счет высокой температуры и давления воздуха образуется аккуратный разрез и небольшие наплывы, которые можно без труда удалить при помощи постукивания. Когда утрачивается контакт с поверхностью, дуга продолжает гореть в дежурном режиме.
    • После того как раскрой завершен, кнопку на плазмотроне отпускают, выключая все виды электрической дуги. Далее систему некоторое время продувают воздухом, чтобы избавиться от мусора и позволить электродам остыть.

    Роль режущего элемента при плазменной резке играет ионизированная дуга плазмотрона. Она позволяет как раскраивать материал, так и сваривать его. Во втором случае применяют присадочную проволоку, состав которой подбирается под конкретный вид металла, а подаваемый воздух заменяют инертным газом.

    Как устроен плазморез

    Этот аппарат состоит из следующих элементов:

    • источник питания;
    • воздушный компрессор;
    • плазменный резак или плазмотрон;
    • кабель-шланговый пакет.

    Источник питания для аппарата плазменной резки осуществляет подачу на плазмотрон определенной силы тока. Представляет собой инвертор или трансформатор.

    Компрессор требуется для подачи воздуха.

    Кабель-шланговый пакет используется для соединения компрессора, источника питания и плазмотрона. По электрическому кабелю от инвертора или трансформатора начинает поступать ток для возбуждения электрической дуги, а по шлангу осуществляется подача сжатого воздуха, который требуется для возникновения внутри плазмотрона плазмы.

    Как работает плазморез — устройство, принцип работы

    Плазменная резка широко используется в изготовлении металлоконструкций и других отраслях. С её помощью можно быстро и качественно разрезать любой токопроводящий материал, а также некоторые нетокопроводящие материалы – пластик, камень и дерево. Разрезать трубы, листовой металл, выполнить фигурный рез или изготовить деталь можно просто, быстро и удобно с помощью технологии плазменной резки. Чтобы работа с плазморезом давалась легко, а рез получался красивым и ровным, не мешает узнать принцип работы плазмореза, который даст базовое понятие, как можно управлять процессом резки. В статье мастер сантехник расскажет, как работает плазморез.

    Как устроен плазморез

    Главными узлами плазмореза являются:

    • Источник постоянного тока (трансформатор или инвертор);
    • Плазмотрон (плазменный резак);
    • Воздушный компрессор.

    Применение постоянного тока обусловлено необходимостью регулирования температура пламени горелки, что невозможно при применении источников переменного тока.

    Повышающие трансформаторы более громоздки, энергоемки, но при этом стойки к перепадам напряжения. Их преимуществом перед инверторами является возможность получать очень высокие напряжения, с их помощью специалисты могут резать металл больших толщин (до 8 см).

    Инверторы занимают меньшую площадь и экономичнее трансформаторов (за счет более высокого КПД), однако, они не позволяют получать высоких напряжений. Как следствие – невозможность реза металла большой толщины (до 3 см).

    Поэтому такие устройства распространены, по большей мере, на малых предприятиях и в небольших мастерских. Их принцип действия прост, поэтому агрегатом могут пользоваться младшие специалисты после проведения инструктажа, как работает аппарат.

    Рабочий орган аппарата имеет сложное внутреннее устройство. В отличие от кислородно-ацетиленового резака, в случае плазменной сварки, он получил особое название – плазмотрон.

    В его корпусе находятся следующие узлы:

    • Сопло;
    • Электрод;
    • Изолятор;
    • Узел приема сжатого воздуха.

    Возбудителем электрической дуги является электрод. Материалами его изготовления, чаще всего, являются гафний, цирконий и бериллий. Эти редкие металлы имеют свойство образовывать тугоплавкие оксидные пленки, которые защищают электрод от разрушения под воздействием высоких температур. Однако, по своим экологическим характеристикам, гафний превосходит другие металлы, ввиду меньшей радиоактивности и применяется чаще остальных.

    Сопло плазменного резака выполняет функцию создания высокоскоростного потока плазмы. Геометрическая конфигурация сопла определяет скорость работы и мощность плазмореза, а также качество получаемой кромки реза. Последний параметр зависит от длины сопла.

    Воздушный компрессор нужен для получения сжатого воздуха требуемого давления. Помимо этого, он применяется еще и для охлаждения рабочих элементов плазмореза.

    Источник питания, плазмотрон, и воздушный компрессор соединяет между собой комплекс кабелей и шлангов.

    Все аппараты плазменной резки можно разделить на две категории: ручные плазморезы и аппараты машинной резки.

    Ручные плазморезы используются в быту, на маленьких производствах и в частных мастерских для изготовления и обработки деталей. Основная их особенность в том, что плазмотрон держит в руках оператор, он ведет резак по линии будущего реза, держа его на весу. В итоге рез получается хоть и ровным, но не идеальным. Да и производительность такой технологии маленькая. Чтобы рез получился более ровным, без наплывов и окалины, для ведения плазмотрона используется специальный упор, который одевается на сопло. Упор прижимается к поверхности обрабатываемой заготовки и остается только вести резак, не переживая за то, соблюдается ли необходимое расстояние между заготовкой и соплом.

    На ручной плазморез цена зависит от его характеристик: максимальной силы тока, толщины обрабатываемой заготовки и универсальности. Например, существуют модели, которые можно использовать не только для резки металлов, но и для сварки. Их можно отличить по маркировке:

    • CUT – разрезание;
    • TIG – аргонодуговая сварка;
    • MMA – дуговая сварка штучным электродом.

    Сила тока и толщина заготовки – основные параметры, по которым подбирается плазморез. И они взаимосвязаны.

    Чем больше сила тока, тем сильнее плазменная дуга, которая быстрее расплавляет металл. Выбирая плазморез для конкретных нужд, необходимо точно знать, какой металл придется обрабатывать и какой толщины. В приведенной ниже таблице указано, какая сила тока нужна для разрезания 1 мм металла. Обратите внимание, что для обработки цветных металлов требуется большая сила тока. Учтите это, когда будете смотреть на характеристики плазмореза в магазине, на аппарате указана толщина заготовки из черного металла. Если вы планируете резать медь или другой цветной металл, лучше рассчитайте необходимую силу тока самостоятельно.

    Например, если требуется разрезать медь толщиной 2 мм, то необходимо 6 А умножить на 2 мм, получим плазморез с силой тока 12 А. Если требуется разрезать сталь толщиной 2 мм, то умножаем 4 А на 2 мм, получаем силу тока 8 А. Только берите аппарат плазменной резки с запасом, так как указанные характеристики являются максимальными, а не номинальными. На них можно работать только непродолжительное время.

    Станок с ЧПУ плазменной резки используется на производственных предприятиях для изготовления деталей или обработки заготовок. ЧПУ означает числовое программное управление. Станок работает по заданной программе с минимальным участием оператора, что максимально исключает человеческий фактор на производстве и увеличивает производительность в разы. Качество реза машинным аппаратом идеально, не требуется дополнительная обработка кромок. А самое главное – фигурные резы и исключительная точность. Достаточно ввести в программу схему реза и аппарат может выполнить любую замысловатую фигуру с идеальной точностью. На станок плазменной резки цена значительно выше, чем на ручной плазморез. Во-первых, используется большой трансформатор. Во-вторых, специальный стол, портал и направляющие.

    Аппараты машинной плазменной резки используют для охлаждения воду, поэтому могут работать всю смену без перерыва.

    Так называемый ПВ (продолжительность включения) равен 100 %. Хотя у ручных аппаратов он может быть и 40 %, что означает следующее: 4 минуты плазморез работает, а 6 минут ему необходимо для того, чтобы остыть.

    Чтобы понять принцип работы плазмореза, необходимо ознакомиться с технологией плазменной резки.

    Прежде всего, необходимо определиться с понятием плазмы, а также для чего она нужна. Плазма – это высокотемпературный ионизированный газ, обладающий высокой электропроводностью.

    Технологический процесс резки плазмой основан на идее газоэлектрической горелки, работающей на основе сварочной дуги. Это достигается построением специальной электрической цепи в следующей последовательности:

    • Вольфрамовый стержень соединяется с отрицательным полюсом источника постоянного тока;
    • Положительный полюс источника постоянного тока соединяется с соплом горелки или изделием;
    • Подача аргона или гелия в горелку.

    Результатом этих операций становится загорание дуги между стержнем вольфрама и соплом. Образовавшаяся дуга подвергается сжатию под воздействием канала из жаропрочного сплава.

    Вследствие этого, возникает очень высокое давление и происходит резкое повышение температуры дуги.

    Возникновение потока плазмы генерирует вокруг себя сильное магнитное поле, еще сильнее сжимающее плазму и повышающее ее температуру.
    Образовавшееся пламя плазмы достигает сверхвысоких температур: выше тридцати тысяч градусов Цельсия. Такое пламя в состоянии качественно как разрезать, так и сваривать любой материал.

    В сюжете – Как работает плазморез

    Особенности работы аппарата

    При включении аппарата плазменной резки с трансформатора на плазмотрон поступает электрический ток высокого напряжения. Вследствие этого, образуется высокотемпературная электрическая дуга. Поток сжатого воздуха, проходя сквозь дугу, возрастает в объеме на один порядок и становится токопроводящим.

    Ионизированный поток газа (плазма), за счет прохождения через сопло, увеличивает свои термодинамические характеристики: скорость возрастает до 800 м/с, а температура до 30 тыс. градусов Цельсия. Электропроводность плазмы сопоставима по значению с электропроводностью обрабатываемого металла.

    Резание металла происходит вследствие его физического расплавления от действия высокой температуры. Незначительная окалина, которая возникает в процессе резки, сдувается потоком сжатого воздуха.

    Скорость резания обратно пропорциональна диаметру сопла плазменной горелки. Для формирования качественной плазменной дуги следует применять тангенциальную или воздушно-вихревую подачу сжатого воздуха.
    Особенность режущей дуги состоит в том, что ее действие носит локальный характер: в процессе резания не происходит деформации или нарушения поверхностного слоя обрабатываемого изделия.

    Где применяются плазморезы

    Плазменная резка и сварка являются незаменимыми способом обработки металла, когда дело касается работы с высоколегированными сталями. Поскольку такие материалы применяются в огромном числе отраслей промышленности, то применение плазморезов получает все большее развитие.

    Наибольшее распространение плазменная сварка получила в изготовлении различных металлоконструкций. Плазменная резка металла также широко применяется в тяжелом машиностроении и при прокладке трубопроводов.
    На крупных машиностроительных заводах получили распространение автоматизированные линии плазморезов.

    Плазморезом следует производить резку абсолютно любых материалов по своему происхождению: как токопроводящих, так и диэлектрических.

    Технология плазменной резки дает возможность резки стальных листовых деталей, особенно сложных конфигураций. Сверхвысокая температура пламени горелки позволяет резать жаропрочные сплавы, в состав которых входит никель, молибден и титан. Температура плавления этих металлов превышает 3 тыс. градусов Цельсия.

    Плазморез является дорогостоящим профессиональным инструментом, поэтому практически не встречается в личном подсобном хозяйстве. Для единичных работ, в независимости от их сложности, мастера могут обойтись доступными инструментами для резки металла, например, электрической болгаркой.

    Там же, где стоят задачи резки высоколегированных сплавов в промышленных масштабах, аппараты плазменной резки являются незаменимыми помощниками. Высокая точность реза, работа с любым материалом – достоинства плазморезов.

    Ручная плазменная резка применяется в отраслях, где требуется изготавливать листовые детали сложных геометрических контуров. Примерами таких отраслей является ювелирная промышленность и приборостроение.

    Плазморезы являются безальтернативным инструментом получения деталей сложного контура, особенно из тонколистовой стали. Там, где листовая штамповка не справляется с задачей получения изделий из очень тонкого листового проката, на помощь технологам приходит плазменная резка.

    Не обходится без плазморезов и проведение сложных монтажных работ по установке металлоконструкций. При этом отпадает необходимость использовать кислородный и ацетиленовый баллоны, это повышает безопасность процесса резания металла. Этот технологический фактор облегчает проведение работ по резке металла на высоте.

    Устройство плазмореза имеет свои особенности, поэтому аппарат имеет ряд негативных особенностей. Недостатком плазморезов считается высокая стоимость аппарата, сложная настройка и относительно невысокая толщина разрезаемого материала (до 22 см), в сравнении с кислородными резаками (до 50 см).

    Ручной плазморез находит свое применение в небольших мастерских по производству сложных и нестандартных деталей. Особенностью работы ручного плазмореза, является высокая зависимость качества реза от квалификации резчика.

    По той причине, что оператор плазменной резки держит плазмотрон на весу, производительность процесса резания металла невысокая. Для большего соответствия требуемым геометрическим характеристикам, для ведения рабочего органа плазмореза применяется специальный упор. Этот упор фиксирует сопло к поверхности заготовки на определенном расстоянии, что облегчает процесс резки.

    Стоимость ручного плазмореза находится в прямой зависимости от его функциональных характеристик: максимального напряжения и толщины обрабатываемого материала.

    Плазмотрон. Устройство и принцип работы

    плазмотрон

    плазмотрон

    Горелки ручных резаков для плазменной резки – основная рабочая часть любого плазмотрона. Именно там формируется высокоэнергетический поток плазмы, управляя которым можно производить точное и быстрое разделение металла.

    Принцип действия ручного плазмотрона

    Во многих современных плазменных резаках первичная дуга, возбуждаемая между электродом и соплом, используется для ионизации газа и генерирования плазмы в самом плазмотроне, до того, как происходит перенос дуги на обрабатываемый металл.

    В ручных плазмотронах такой перенос происходит при соприкосновении наконечника с металлом. Создаётся искра, после которой запускается высокочастотная цепь, дуга в которой начинается горение плавно и устойчиво.

    Основными характеристиками ручного плазмотрона являются:

    1. Ток зажигания, А.
    2. Рабочий ток, А.
    3. Ширина дуги, мм.
    4. Скорость движения плазменного потока, м/с.

    плазмотрон для плазменной резки

    Высокую скорость резки плазмотрону обеспечивает выходное сопло особой формы. Оно заставляет ионизированный газ сжиматься с высокой скоростью. При этом концентрация тепловой мощности достигает пределов, достаточных для локального расплавления металла.

    Горелка плазмотрона включает в себя две концентрично расположенные трубки. Во внутренней движется плазменный поток, а во внешней – газ, разогретый до менее высоких температур. Этот внешний поток ограждает периметр зоны резания, обеспечивая точность реза, и защищает прилегающие зоны от окисления.

    сопло плазмотрона

    Устройство

    Горелка состоит из:

    • электрододержателя, электрически изолированного от обеих внутренних трубок;
    • вихревого кольца, которое обеспечивает круговое движение плазмы;
    • полого электрода, внутри которого установлены рабочая и экранирующая трубки;
    • возвратной пружины;
    • наконечника;
    • защитного колпачка.

    Конструктивно к плазмотрону для плазменной резки относят также шланги, по которым осуществляется подвод плазмообразующего воздуха.

    Форма отверстия в сопле определяет размеры и конфигурацию дуги. Оно рассчитывается таким образом, чтобы выдерживать поток ионизированного газа, нагретого до 4500…5000 ° С, при плотности тока до 40000 ° С/мм 2 .

    устройство плазмотрона

    Последовательность работы ручного плазмотрона такова. При выключенном оборудовании рабочие поверхности детали и наконечника соприкасаются между собой, поэтому головка плазмотрона не должна быть прижата к металлу. При включении резака источник питания начинает генерировать постоянный ток, мощность которого может достигает 500 А. Ток ионизирует воздух, находящийся в промежутке между трубками, который постепенно ионизируется, приобретая необходимую температуру. В результате инициируется поток плазмообразующего газа. При повышении давления газа до нужных пределов, пружина раздвигает между собой электрод и сопло. Образуется промежуток, в котором возбуждается электрическая искра. Она и преобразует воздушный поток в струю плазмы. Затем происходит переключение направления постоянного тока по наиболее короткому пути между электродом и заготовкой. Такое движение длится до тех пор, пока триггер не возвращён в своё прежнее положение.

    Конструкция и порядок эксплуатации

    Одним из наиболее популярных видов ручных плазмотронов является Panasonic P80. Работа на нём должна производиться с учётом некоторых особенностей. В частности, перед началом резки обязательно соблюдение следующих условий:

    1. Во время возбуждения дуги нельзя касаться торцом наконечника кромки основного материала. Это приведёт к образованию неконтролируемой дуги, которая сожжёт наконечник.
    2. Процесс резки нельзя начинать при вертикальном расположении наконечника относительно основного металла. В этом случае внутри наконечника образуется дуга.
    3. При резке пластин толщиной более 16 мм необходимо убедиться, что дуга достигла нижней стороны заготовки, и только тогда перемещать горелку в новое положение.

    При работе резака рекомендуется выдерживать зазор около 5 мм между заготовкой и наконечником. С этой целью в комплектации к резаку Р80 предусмотрена направляющая, которая электрически изолируется от разрезаемого металла.

    режем плазмотроном

    Отклонение от перпендикулярности оси резака от поверхности заготовки не должно превышать 50, а направление движения инструмента должно быть противоположным направлению плазменной струи.

    Все типы ручных плазмотронов – устройства повышенной опасности. Поражающими факторами являются яркое свечение дуги, высокие токи обработки и температуры. Поэтому необходимо тщательно придерживаться правил эксплуатации плазмореза, которые указывает производитель.

    Цена ручного плазмореза Panasonic Р80 – от 5500 руб. Ближайшим отечественным аналогом плазмотрона Р80 считается резак П2-180, цены на который стартуют от 6000 руб. Более мощные модели, например, FBP60 от Fubag, стоят дороже – до 15000 руб. Доступны и менее мощные модели ручных плазмотронов, в частности, CUT РТ31 (от 2000 руб.).

    Принцип работы плазмотрона для резки металла

    История плазмотрона берет свое начало с середины прошлого века. Производство тугоплавких металлов, набиравшее в то время обороты, потребовало особой технологии обработки. Еще одним фактором, послужившим началу выпуска устройств, стала потребность в мощном источнике света и тепла. Чтобы ответить на вопрос, какой плазмотрон лучше, следует сначала разобраться с особенностями этого технического прибора, рассмотреть его разновидности.

    Плазмотрон: общие черты

    Плазмотрон представляет собой особое техническое устройство, благодаря которому электрический ток преобразуется в плазму, а последняя служит для резки металлических материалов разной толщины. К особенностям современных приборов относятся:

    • возможность получения высоких температурных показателей, добиться которых невозможно при помощи обычного топлива;
    • простота управления и регулировки (настройка пуска, остановки и мощности);
    • высокая степень надежности и компактные размеры.

    Плазменная резка при обработке различных металлов

    Широкое применение установок плазменной резки обусловлено особенностями данной технологии. Немаловажное значение имеет и экономическая выгода метода. Большим плюсом является возможность раскраивать различные типы металлов при помощи одного и того же аппарата. Кроме того, плазмотроны справляются с широким диапазоном толщины листов.

    Производительность оборудования для плазменной резки в разы выше этого же показателя у газопламенных аппаратов, особенно при обработке тонких листов и металла средней толщины. Благодаря этому скорость работы на плазмотроне выше, чем при использовании газовой резки кислородом.

    Применение плазменной резки подразумевает использование активных или неактивных газов в зависимости от параметров металлопроката – его толщины и типа металла:

    • Азотоводородная смесь применяется для работы с медью, алюминием и раскройки сплавов на их основе, но не подходит для титана и стали. Максимальная толщина листа для работы – 100 мм.
    • Азот с аргоном применяется при работе с высоколегированными видами сталей, не подходит для черных металлов, меди, титана и алюминия. Максимальная толщина листа стали для работы – 50 мм.
    • Азот применяют для резки листов титана различной толщины, меди и алюминия – до 20 мм, латуни – вплоть до 90 мм, а также при раскрое сталей различного состава и толщины: с низким содержанием углерода и легирующих компонентов – до 30 мм, высоколегированных образов – до 75 мм.
    • Сжатый воздух применяют для резки черных металлов, меди – до 60 мм, алюминия – до 70 мм. Этот состав не подходит для работы с титаном.
    • Смесь аргона с водородом применяется для резки сплавов, в основе которых алюминий и медь, а также высоколегированных сталей толщиной более 100 мм. Данный состав не подходит для раскроя титана и других типов сталей (с низким содержанием углеродов и легирующих элементов, углеродистых).

    После подключения баллона с соответствующим плазмообразующим газом необходимо провести настройку технических характеристик плазмотрона:

    • мощности аппарата, а также статистических и динамических установок источника питания;
    • циклограммы плазмотрона;
    • метода крепления и материала катода внутри аппарата;
    • типа механизма охлаждения для сопла плазмореза.

    Применение плазменной резки оправдано для изготовления элементов сложной конструкции, проделывания ровных отверстий. С помощью этого метода вырезают детали, которым не потребуется дополнительной обработки механическим способом. Плазменной резкой пользуются при подготовке кромок под сварку, для разрезания труб и различных профилей.

    Плазменная резка при обработке различных металлов

    Применение станков для плазменной резки позволяет решить задачи изготовления деталей с любой формой сечения, объемных элементов (прибылей, отливок и др.). Эта технология допускает использование разных типов реза: разделительного, копьевого, поверхностного, под водой, а также плазменного пресса. Применение плазменной резки позволяет проводить финишную обработку для литья, плавку, прожигание отверстий, нанесение узора, нагрев металла, плавление, разрезание и последующую сварку, обточку и строжку, наплавку, а также закалку изделий и т. д.

    Оборудование для плазменной резки заменяет собой многие инструменты: болгарки, ножовочное полотно, паяльную лампу, термофен, токарный резец, газовую горелку, лазерный резак, сварочный инвертор и др.

    Элементы прибора

    Устройство плазмотрона представлено таким образом, чтобы обеспечивать резку металлов, относящихся к классу тугоплавких. Электрод (катод) имеет специальную циркониевую или гафниевую вставку. Использование указанных металлов при высоких температурах позволяет добиться эффекта выбивания электронов с их поверхности (термоэлектронная эмиссия).

    Сопло – еще один расходный элемент плазмотрона, который всегда изолируется от катода. Прибор также оснащен механизмом для закручивания газа, образующего плазму.

    Расходники способны функционировать в течение одной 8-часовой рабочей смены, если речь идет об обработке металла толщиной до 1 см. Далее они подлежат замене, причем последнюю желательно проводить одновременно для катода и сопла.

    При несоблюдении сроков замены качество получаемого реза значительно ухудшается, могут появиться волны или дать о себе знать эффект реза под углом. Если гафниевая или циркониевая вставка выгорят более чем на 2 мм, то электрод пригорит. Следствием станет значительный перегрев устройства.

    Чтобы расплавленный обрабатываемый материал не повредил элементы плазмотрона, его оснащают защитным кожухом. Регулярный демонтаж и чистка кожуха – залог долгой и качественной работы всего прибора. При несоблюдении элементарных условий эксплуатации можно в скором времени добиться серьезной поломки плазмореза. Не менее важно чистить и другие элементы.

    Где чаще всего применяется плазменная резка

    Использование технологии плазменной резки становится все популярнее. Если сравнивать этот метод с другими, то можно сделать вывод о том, что плазмотрон позволяет достичь высоких показателей качества при достаточно простой эксплуатации и дешевой ручной установке. Поэтому применение плазменной резки металла в бизнесе разной направленности получает все более широкое распространение:

    • При обработке различного металлопроката – метод применим к цветным, тугоплавким и черным металлам.
    • Плазменная резка используется в производстве металлоконструкций.
    • Применение плазменной резки позволяет создавать сложные по форме детали, что используется в художественной ковке при обработке элементов.
    • Другие виды промышленных производств, включая машиностроение, авиастроение и даже капитальное строительство, также не обходятся без плазменной резки металла.

    Ручные установки для плазменной резки сегодня применяются наравне со станками ЧПУ, оснащенными плазмотронами. Изготовленные таким методом элементы становятся частью декора лестниц, перил, ограждений и т. д.

    Где чаще всего применяется плазменная резка

    Применение плазменной резки помогает предпринимателям построить бизнес на использовании этой технологии: имея в наличии плазмотрон, можно брать заказы на раскрой металлопроката. Подавляющее большинство металлообрабатывающих предприятий малого и среднего объема имеют в своем арсенале эту технологию.

    Разновидности плазмотронов

    Весь спектр современных технических приборов для резки металлов можно поделить на три класса:

    • плазмотроны на электрической дуге;
    • высокочастотные плазморезы;
    • комбинированные устройства.

    Чтобы понять особенности работы каждого вида плазмотрона из обозначенных классов, следует рассмотреть их по отдельности.

    Специфика технологии

    Плазменную резку выполняют двумя методами – плазменно-струйным и плазменно-дуговым. Чтобы обработать металл, чаще всего используют плазменно-дуговой способ. Правильный подбор силы тока и скорости резки – гарантия получения качественного и ровного разреза.

    Главный рабочий элемент плазмореза – электроплазменный резак. Когда аппарат включается, в резак поступает электрический ток высокой частоты и между наконечником и электродом образуется высокотемпературная дуга. Проходящий через нее сжатый воздух нагревается под воздействием электричества до 25 000-30 0000 С. При этом его объем увеличивается в 100 раз. В это же время воздух ионизируется и становится электропроводником. Сформировавшая дуга, вырвавшись из наконечника со скоростью до 3 м/с, не только раскаляет металл в заданном месте, но и сдувает оплавленные крупинки. Результат такого воздействия плазмы на металл — образование ровного, аккуратного разреза.

    Высокочастотные плазморезы

    Особенностью приборов данного класса является отсутствие электродов, поскольку связь с питающим источником осуществляется благодаря индуктивному (или емкостному) принципу. Соответственно, плазматроны делятся на индукционные и емкостные.

    Принцип работы плазмотронов, принадлежащих к классу высокочастотных устройств, подразумевает выполнение камеры, где происходит разряд, из не проводящих ток материалов. Зачастую применяется стекло или керамика.

    Изоляция стенок осуществляется по газодинамическому принципу, поэтому приборы застрахованы от перегрева и могут охлаждаться за счет воздуха.

    Необходимое оборудование

    Для того, чтобы резать металл плазмой, используют агрегаты бытового и промышленного назначения. Промышленное оборудование – это станки с числовым программным управлением (сложные многофункциональные автоматизированные комплексы). Бытовые аппараты имеют небольшие размеры и работают от сети 220V или 380V. Купить их можно совершенно недорого.

    Источником плазменной резки в бытовых агрегатах является инвертор (сварочный генератор) или трансформатор. Первый имеет небольшие габариты и удобен в обращении. Второй надежен в эксплуатации и долговечен. Его рабочим телом является подготовленный атмосферный воздух.

    Приборы используют в домашних мастерских, на профессиональном производстве и в строительстве. Ими режут листовой металл, обрабатывают керамические, каменные и цилиндрические изделия (включая стальные трубы), вырезают геометрические фигуры сложных форм (включая отверстия). Такое оборудование функциональнее и удобнее в использовании, чем обычная газокислородная резка. Как по размерам, так и по технике безопасности.

    Принцип работы плазмотрона для резки металла

    Плазмотрон

    Металл режется посредством болгарки, газокислородного резака, электродуговой сваркой, рубится на гильотине. Современные способы — обработка лазером или плазмой. Последняя, представляет собой скоростной поток высокотемпературного газа. Раскрой металла ионизированным газом применяется в промышленности и для решения частных задач. В этом случае используется плазмотрон для ручной воздушно-плазменной резки.

    Плазмотрон — что это

    Устройство, в котором образуется плазма, называется плазмотроном. Или, другими словами, — плазмогенератор. Плазма — среда, состоящая из отрицательных и положительных радикалов, ионизированный газ. Имеет квазинейтральные свойства. То есть, в малом объёме, по сравнению с общей субстанцией, обладает нулевым зарядом.

    Конструкция

    Плазмотрон

    Существуют два основных вида устройства плазмотрона:

    • прямого действия;
    • косвенного действия.

    В первом виде, деталь является частью электрической сети. Катод — это головка плазмотрона, анод — заготовка. Между ними возникает электродуга и протекает плазменный разряд.

    Во втором виде, дуга горит внутри плазмотрона. Обработка детали осуществляется только плазменной струёй.

    • стержневой вольфрамовый (графитовый) катод;
    • дуговая камера с вихреобразователем для создания плазмы;
    • сопло, — разгоняет поток ионизированного газа, формирует его толщину;
    • элементы подвода газа, охладителя (вода);
    • электрокабель.

    Рабочим телом выступает воздух или различные газы. Пароводяной плазмотрон для охлаждения использует воду, которая, после регенерации, превращается в пар и направляется в вихревую камеру.

    Принцип работы плазмотрона:

    Принцип работы плазмотрона

    1. Газ (воздух) под высоким давлением, проходя вихреобразователь, попадает в дуговую камеру.
    2. Между электродом и соплом зажигается первичная (дежурная) дуга. Она необходима для создания основной, рабочего электроразряда. Дежурная дуга не касается стенок сопла из-за вихревого потока газов.
    3. За счёт выделенного тепла и высокой температуры образуется ионизированный газ (плазма).
    4. Скорость потоку придаёт сопло.

    Электродуга разогревает металл, плавит его. Удаление расплава осуществляется высокоскоростным потоком ионизированного газа, или смеси водорода и кислорода, если используется пароводяной плазмотрон.

    Резка металла осуществляется различными типами плазмотронов:

    • воздушно-плазменный;
    • газоплазменный;
    • индукционный (высокочастотный);
    • комбинированные;
    • пароводяной плазмотрон.

    Воздушно-плазменный резак

    Рабочая среда — подготовленный атмосферный воздух. Используется для резки чёрных металлов. Отличается наиболее простой конструкцией среди аналогов.

    Плазмотрон для ручной воздушно-плазменной резки входит в состав агрегатов, работающих от сети 220V или 380V. Оснащается упором для обеспечения оптимального расстояния между резаком и поверхностью заготовки. Сделано это для того, чтобы не уставала рука оператора. В противном случае, линия реза получается неровной со значительной шероховатостью

    Газоплазменный резак

    Газоплазменный резак

    Рабочее тело для образования плазмы — различные газы:

    Пароводяной плазмотрон работает на воде (водяном паре).

    Индукционный резак

    Разновидность высокочастотного устройства. Используется принцип индуктивно-связанной плазмы. Для получения такого разряда используется переменное магнитное поле, создаваемое индукционной катушкой. Частота колебаний находится в диапазоне 1-100МГц.

    Для прохождения высокочастотной мощности, головка плазмотрона выполняется из диэлектрика. Например, используется кварцевый материал (стекло) или керамика. Это позволяет в качестве рабочего тела применять не только воздух, но и кислород, азот, аргон, водяной пар.

    Плазменный резак своими руками

    Индуктивно-связанная плазма характеризуется:

    • высокой плотностью электронов;
    • температурой ~ 6000K, — любое вещество переходит в атомарное состояние.

    Высокая концентрация электронов и положительных ионов даёт преимущество при поверхностной обработке металлов, например, травлении. Индуктивная катушка находится вне активной зоны горения. Такое разделение позволило использовать для охлаждения воздух.

    Индукционный плазмотрон — специфическое оборудование, применяемое для решения узких задач. С его помощью получают чистые порошковые металлы.

    Комбинированные аппараты

    Представляют собой симбиоз электрической дуги и токов высокой частоты. Магнитное поле используется для сжатия электрического разряда.

    По стабилизации электродуги плазмотроны подразделяются на типы:

    • газовые;
    • водяные;
    • магнитные.

    Функция стабилизации влияет на сжатие электродуги, направление вдоль оси электрода и в отверстии сопла.

    Газовые устройства

    Одна из самых простых и распространённых схем. Принцип основан на сжатии столба дуги плазмообразующим газом. Кроме этого, реализуется охлаждение стенок. Головка плазмотрона работает в щадящих условиях.

    Водяные устройства

    Пароводяной плазмотрон использует в качестве рабочего тела паровой газ. Водяная система, с учётом регенерации пара, позволила добиться высокой степени сжатия столба электродуги. Температура достигла 50000°C. В конструкции применён графитовый электрод, подающийся в зону горения автоматически. Ускоренному сгоранию углерода способствует наличие высокотемпературного водяного пара.

    Схема пароводяного плазмотрона

    Несмотря на усложнение конструкции, паровой плазменный резак, является одним из самых востребованных устройств.

    Водоохлаждаемая головка резака — вторая конструкция (после воздушной), применяемая умельцами при конструировании своими руками модели плазменного резака.

    Магнитные резаки

    Магнитная система менее эффективна, по сравнению с предыдущими. Но, преимущество — это регулировка сжатия электродуги без потери рабочего тела (газа).

    Наряду с обычными сварочными аппаратами и газокислородной резкой, несмотря на существенную цену, всё большее количество умельцев осваивает сборку плазмотрона. Мы будем признательны, если вы поделитесь своим опытом, расскажете о своих самоделках. Для этого на сайте есть блок для комментариев.

    Принцип работы плазмотрона для резки металла

    История плазмотрона берет свое начало с середины прошлого века. Производство тугоплавких металлов, набиравшее в то время обороты, потребовало особой технологии обработки. Еще одним фактором, послужившим началу выпуска устройств, стала потребность в мощном источнике света и тепла. Чтобы ответить на вопрос, какой плазмотрон лучше, следует сначала разобраться с особенностями этого технического прибора, рассмотреть его разновидности.

    Краткое содержимое статьи:

    Плазмотрон: общие черты

    • возможность получения высоких температурных показателей, добиться которых невозможно при помощи обычного топлива;
    • простота управления и регулировки (настройка пуска, остановки и мощности);
    • высокая степень надежности и компактные размеры.

    Элементы прибора

    Устройство плазмотрона представлено таким образом, чтобы обеспечивать резку металлов, относящихся к классу тугоплавких. Электрод (катод) имеет специальную циркониевую или гафниевую вставку. Использование указанных металлов при высоких температурах позволяет добиться эффекта выбивания электронов с их поверхности (термоэлектронная эмиссия).

    Сопло – еще один расходный элемент плазмотрона, который всегда изолируется от катода. Прибор также оснащен механизмом для закручивания газа, образующего плазму.



    Расходники способны функционировать в течение одной 8-часовой рабочей смены, если речь идет об обработке металла толщиной до 1 см. Далее они подлежат замене, причем последнюю желательно проводить одновременно для катода и сопла.

    При несоблюдении сроков замены качество получаемого реза значительно ухудшается, могут появиться волны или дать о себе знать эффект реза под углом. Если гафниевая или циркониевая вставка выгорят более чем на 2 мм, то электрод пригорит. Следствием станет значительный перегрев устройства.

    Чтобы расплавленный обрабатываемый материал не повредил элементы плазмотрона, его оснащают защитным кожухом. Регулярный демонтаж и чистка кожуха – залог долгой и качественной работы всего прибора. При несоблюдении элементарных условий эксплуатации можно в скором времени добиться серьезной поломки плазмореза. Не менее важно чистить и другие элементы.

    Разновидности плазмотронов

    • плазмотроны на электрической дуге;
    • высокочастотные плазморезы;
    • комбинированные устройства.

    Чтобы понять особенности работы каждого вида плазмотрона из обозначенных классов, следует рассмотреть их по отдельности.

    Электродуговые плазмотроны

    Все приборы этого класса оснащаются анодом и катодом, которые подключаются к источнику постоянного тока. Роль хладагента выполняет обычная вода, циркулирующая по специальным каналам. На рынке можно встретить устройства с электролитическим электродом. Последний также может вращаться.

    Высокочастотные плазморезы

    Особенностью приборов данного класса является отсутствие электродов, поскольку связь с питающим источником осуществляется благодаря индуктивному (или емкостному) принципу. Соответственно, плазматроны делятся на индукционные и емкостные.

    Принцип работы плазмотронов, принадлежащих к классу высокочастотных устройств, подразумевает выполнение камеры, где происходит разряд, из не проводящих ток материалов. Зачастую применяется стекло или керамика.

    Изоляция стенок осуществляется по газодинамическому принципу, поэтому приборы застрахованы от перегрева и могут охлаждаться за счет воздуха.

    Комбинированные устройства

    Приборы сочетают в себе работу дугового разряда (его горение) и работу токов высокой частоты. Причем в некоторых приборах дуговой разряд дополнительно сжимается благодаря внешнему магнитному полю. Помимо указанного деления приборы подразделяются на виды согласно способу их охлаждения, способу стабилизации электрической дуги и т.д.

    Плазменная резка металлов: тройка лидеров

    Критерием для определения лучших производителей плазмотронов являются: надежность устройства, его стоимость и вес, а также функциональность.

    Сварог CUT 40B (R34) представляет собой превосходное сочетание стоимости аппарата и показателей мощности. Средняя рыночная цена составляет 28 тысяч рублей. Прибор отличается компактными размерами и небольшим весом. Оптимален для разрезания тонколистового металла.



    Эргономичная панель управления в сочетании с разъемом для присоединения горелки делают работу с устройством комфортной и простой. Недостатком является ограниченный рабочий ресурс.

    Aurora Pro AirForce 60 IGBT – зарекомендовал себя как наиболее энергосберегающий прибор. Цена порядка 40 тысяч рублей. Справляется с разрезанием мягкой стали, алюминия, меди. Благодаря режущему току в 60 А прибор способен справиться с 20-миллиметровой сталью. Минусом является плохая приспособленность к условиям промышленного поточного использования.



    Brima CUT 120 идеален для работы с толстым материалом. Стоит прибор порядка 90 тысяч рублей. Если взглянуть на фото плазмотрона, то в глаза сразу бросается небольшой размер трансформатора. Отсюда проистекает и малый вес прибора. Толщина металла, подвергаемого обработке, может доходить до 35 мм. Главный недостаток – чувствительность к влажной среде.

    Фото плазмотрона в работе


    Читайте здесь: Стол для сварки своими руками – пошаговая инструкция по изготовлению и сборке (65 фото)

    Читайте также:
    Нюансы выбора пневматических УШМ, их характеристики
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: