Подключение трехфазного частотника к двигателю через твердотельное реле

Подключение двигателей к различным видам ПЧ

Рассмотрим схемы включения асинхронных двигателей «звезда» и «треугольник» в контексте их питания от преобразователей частоты. Для начала немного освежим в памяти теорию.

Что такое «звезда» и «треугольник»

Обычно используются асинхронные двигатели с тремя обмотками, которые можно подключить двумя способами — по схеме «звезда» (обозначается символом «Y») или «треугольник» («Δ» или «D»). Схема соединения должна обеспечивать нормальную работу двигателя при имеющемся напряжении питания.

Первое, от чего необходимо отталкиваться при выборе схемы — информация на шильдике двигателя. На нем указываются параметры для обеих схем. Наиболее важный параметр — напряжение питания. Напряжение «звезды» в 1,73 раза (точнее в квадратный корень из 3) больше, чем «треугольника». Например, если указано, что напряжение питания двигателя, включенного по схеме «звезда», составляет 380 В, то можно точно сказать, даже не глядя на шильдик, что для включения по схеме «треугольник» необходимо напряжение 220 В. В данном случае напряжение 380 В соответствует линейному напряжению в стандартной сети, и двигатель можно подключать по схеме «звезда» через контактор либо через частотный преобразователь. То же самое справедливо и для случаев, когда напряжение «треугольника», указанное на шильдике, равно 380 В. Тогда, умножая на 1,73, получаем напряжение «звезды» равным 660 В.

Эти два типа двигателей, отличающиеся напряжениями питания (220/380 и 380/660 В), в подавляющем большинстве случаев используются на практике и имеют свои особенности подключения, которые мы рассмотрим ниже.

Классическая схема «звезда» / «треугольник»

При питании «напрямую» от промышленной сети с линейным напряжением 380 В подойдут оба типа двигателей. Нужно лишь убедиться, что схема включения обмоток собрана на нужное напряжение.

Однако на практике для питания в схеме «звезда» / «треугольник» применяют второй тип приводов (380/660 В). Данная схема используется для уменьшения пускового тока мощных двигателей, который может превышать рабочий в несколько раз. Несмотря на то, что этот ток кратковременный, в течение разгона питающая сеть и привод испытывают значительные электрические и механические перегрузки – ведь в первую долю секунды ток двигателя может в 10 раз превышать номинал, плавно снижаясь в процессе разгона.

Схема подключения «звезда» / «треугольник» приведена во многих источниках, поэтому лишь напомним коротко, как она работает.

Чтобы сделать процесс пуска более щадящим, сначала напряжение 380 В подают на обмотки двигателя, включенные по схеме «звезда». Поскольку рабочее напряжение этой схемы должно быть больше (660 В), двигатель работает на пониженной мощности. Через несколько секунд, после того, как привод раскрутится, включается «треугольник», для которого 380 В является рабочим напряжением, и двигатель выходит на номинальную мощность.

Классическую схему мы рассмотрели, а теперь разберём, в каких случаях использовать подключение двигателей в «звезде» и «треугольнике» при питании от преобразователя частоты.

Преобразователи частоты на 220 В

При питании преобразователя частоты от одной фазы (фазное напряжение 220 В) линейное напряжение на его выходе не может быть более 220 В. Поэтому для питания асинхронного двигателя от однофазного ПЧ нужно подключить обмотки привода с напряжениями 380/220 В по схеме «треугольник». Этот же двигатель, подключенный по схеме «звезда», будет работать с пониженной мощностью.

Преобразователи частоты на 380 В

Трехфазные ПЧ являются более универсальными с точки зрения подключения двигателей с разным напряжением питания. Главное – собрать в клеммнике (борно) двигателя схему на напряжение 380 В. Именно этот вариант используется в большинстве частотных преобразователей, работающих в промышленном оборудовании.

ПЧ с возможностью переключения «звезда» / «треугольник»

В некоторых преобразователях, работающих с мощными двигателями, имеется возможность оперативного переключения схемы работы. Это делается с целью расширения диапазона регулировки скорости двигателя вверх от номинальной. Метод основан на том факте, что подключение «звездой» обеспечивает более высокий момент на малой скорости, а подключение «треугольником» — высокую скорость. Можно задавать выходную частоту, на которой происходит переключение, время паузы (задержки) переключения, параметры двигателя для первого и второго режимов.

У частотных преобразователей такого типа имеются выходы для включения соответствующих контакторов, обеспечивающих формирование нужных схем включения.

Настройки ПЧ для схем «звезда» и «треугольник»

Когда выбирается схема подключения, нужно помнить о том, что некоторые параметры в настройках ПЧ чувствительны к выбору вида схемы, например, номинальное напряжение и номинальный ток.

Бывает так, что необходимо подключить двигатель, собранный по схеме «треугольник» на напряжение 220 В, к выходу трехфазного ПЧ, линейное напряжение которого при частоте 50 Гц равно 380 В. Понятно, что в этом случае двигатель нужно включить в «звезду», но иногда этого сделать невозможно.

Выход есть. Необходимо указать номинальную частоту двигателя равной не 50 Гц, как указано на шильдике, а 87 Гц (в 1,73 раза больше). Аналогичным образом нужно задать и максимальную выходную частоту преобразователя. В результате того, что отношение V/F на выходе ПЧ остается неизменным, на частоте 50 Гц напряжение на обмотках двигателя составит как раз 220 В. При этом верхнюю рабочую частоту двигателя необходимо установить на значение 50 Гц.

Читайте также:
Покраска стен: особенности технологии

Преимуществом такого подключения является возможность повышения рабочей частоты двигателя выше 50 Гц, при этом вплоть до 87 Гц двигатель не будет терять рабочий момент. В данном случае важно следить за механическим износом системы и за нагревом привода.

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Частотные преобразователи используются для подключения различных электродвигателей и позволяют регулировать такие характеристики, как скорость вращения ротора, момент силы вала и защищают от перегрузок и перегрева. Также такие устройства дают возможность подключать трехфазное оборудование в однофазную систему без потери мощности и перегрева обмоток двигателя.

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Разновидности частотных преобразователей

Современные частотные преобразователи различаются многообразием схем, которые можно сгруппировать в несколько категорий:

  1. Высоковольтные двухтрансформаторные

Принцип работы такого прибора заключается в последовательном преобразовании напряжения при помощи понижающего и повышающего трансформатора, преобразования частоты низковольтным преобразователем, а также сглаживание пиковых перенапряжений на выходе с помощью синусоидального фильтра. Схема работы выглядит следующим образом: питающее напряжение 6000 В подается на понижающий трансформатор и на его выходе получают 400 (660) В, далее оно подается на низковольтный преобразователь и после изменения частоты подается на повышающий трансформатор для увеличения значения напряжения до начального.

  1. Тиристорные преобразователи

Такие устройства состоят из многоуровневых частотных преобразователей на основе тиристоров. Конструктивно они состоят из трансформатора (обеспечивающего понижение питающего напряжения), диодов (для выпрямления) и конденсаторов (для сглаживания). Также для уменьшения уровня высших гармоник применяют многопульсные схемы.

Тиристорные преобразователи имеют высокий КПД до 98 % и большой диапазон выходных частот 0-300 Гц, что для современного оборудования является положительной и востребованной характеристикой.

  1. Транзисторные частотные преобразователи

Такие частотные преобразователи являются высокотехнологичными устройствами, которые собираются на транзисторах различного типа. Конструктивно они имеют транзисторные инверторные ячейки и многообмоточный сухой трансформатор специальной конструкции. Управляют таким преобразователем с помощью микропроцессора, что позволяет тонко настраивать работу оборудования и контролировать весь процесс работы различных двигателей. Транзисторные частотные преобразователи, так же, как и тиристорные, имеют высокий КПД и широкий диапазон регулирования частоты.

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем. Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь.

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Обратите внимание! Частотный преобразователь может иметь дополнительные настройки, выполняемые с помощью DIP-переключателей, а также встроенным программным обеспечением.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Особенности и схема подключения частотного преобразователя к разным типам электродвигателейОсобенности и схема подключения частотного преобразователя к разным типам электродвигателей

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств. Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки.

Читайте также:
Разновидности противоскользящих резиновых накладок на ступени лестницы на крыльцо

Твердотельные реле. Схемы подключения

В этой статье обсудим схемы подключения твердотельными реле (ТТР), и способы управления ими.

Напоминаю, для тех кто не в курсе – что такое твердотельное реле и как оно работает – обратитесь к более старой моей статье О принципах работы твердотельных реле.

Схемы включения подобных реле не очень сложны, но, как и везде, есть свои особенности.

Твердотелки – надо ли их использовать?

Для начала рассмотрим также целесообразность применения таких реле. Например, реальный случай:

У нас на предприятии на одном станке стоят соленоидные клапаны с питанием 24VDC 2А. Эти два клапана соединены параллельно, и включаются-выключаются с частотой примерно 1 раз в секунду. Питание идёт через реле. И, несмотря на то, что номинальный ток реле 10А индуктивной нагрузки, приходилось менять его каждый месяц-два. Поставили мы твердотелку – и забыли, работает без шума и проблем уже два года.

Другой случай, когда такие реле не нужны:

Простейший контроллер температуры, точность поддержания не существенна. Нагрузка – ТЭНы, работают в воде круглосуточно. Чаще, чем раз в год, один из ТЭНов замыкает или коротит на корпус. Здесь большая вероятность того, что ТТР выгорит, так как они очень чувствительны к перегрузкам.

О перегрузках и защите твердотельных реле будет подробно сказано ниже, а в данном случае целесообразно применить обычный контактор, который прекрасно справляется с перегрузкой и стоит в 10 раз дешевле.

Поэтому, за модой гнаться не стоит, а лучше применить трезвый расчет. Расчет по току и по финансам.

Если кому-то придёт в голову, можно кнопкой звонка или герконом запускать двигатель мощностью 10 кВт! Но не так всё просто, подробности будут ниже.

Различия схем включения реле

По виду подключения твердотельные реле можно разделить на следующие категории:

По управлению (виду входного управляющего сигнала):

  • постоянное напряжение (встречается чаще всего),
  • переменное напряжение,
  • постоянный ток 4-20 мА,
  • переменный резистор.

По виду коммутируемого тока

  • твердотельные реле переменного тока
  • твердотельные реле постоянного тока

По количеству фаз

  • одна фаза
  • три фазы (как правило, фактически это две фазы)

В любом случае, для выбора ТТР и его схемы включения нужно руководствоваться мануалами на данное реле.

Кстати, рекомендую мою статью про трехфазное и однофазное напряжение. Терминология и отличия разжеваны не пальцах)))

Схемы подключения твердотельных реле

Теперь рассмотрим подключение твердотельного реле подробнее.

Управление твердотельными реле схемотехнически такое же, как и у обычного реле. Ниже упрощенно показана схема включения реле переменного тока с сигналом управления 24В постоянного тока:

Схема включения твердотельного реле

Схема показана для реле, у которого управляющее напряжение постоянное, от 5 до 24 Вольт. Данное реле может коммутировать переменное напряжение до 240 Вольт, ток до 20 А.

С током не всё так просто, но об этом ниже.

Как работает схема. На вход (контакты 3 и 4, соблюдать полярность!) подается управляющее напряжение от источника 24В. Подается оно через цепь управления, которая представлена как НО контакт. Этим контактом может быть и обычное реле, и выход контроллера, и датчик с релейным выходом или транзисторным выходом типа PNP.

Про НО контакты и PNP выходы датчиков я подробно написал в этой статье. Очень рекомендую!

Ещё раз напоминаю –

НЗ – это закрытые (замкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) течёт ток.

НО – это открытые (незамкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) ток не течёт.

Условные выходные контакты ТТР также будут НО, т.к. без активации цепи управления нагрузка выключена.

Теперь подробнее по управлению твердотелками.

Схемы с управлением от транзистора

Здесь транзистор может быть выходом любого полупроводникового прибора – датчика приближения, контроллера, и т.п.

Управление транзистором PNP, НО реле

Скажу, что со схемами управления, которые я взял из фирменных инструкций, полная путаница. Можете сами разобраться, а я расскажу своё мнение.

Управление транзистором PNP, НО реле

Управление транзистором PNP, НО реле

Под “нормально открытым контактом” (читали, что это, ссылку я давал выше?) подразумевается, что без управляющего напряжения (на базе транзистора) твердотельное реле не пропускает ток. Напряжение между входными контактами 3 и 4 близко к нулю, реле выключено. При подаче входного управляющего напряжения на базу транзистора (например, +5В), транзистор открывается и плюс подается на вход 3. Реле открывается, нагрузка получает питание.

Управление транзистором NPN, НЗ реле

Управление транзистором NPN, НЗ реле

Управление транзистором NPN, НЗ реле

Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, нагрузка под напряжением.

Читайте также:
Рейтинг лучших ирригаторов полости рта

Управление транзистором NPN, НО реле

Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, близкое к нулю, и нагрузка без напряжения.

Управление резистором

Плавно подходим к переменному току.

Управление переменным резистором

Управление переменным резистором

Не путать переменный ток и переменный резистор! В данном случае твердотельное реле фактически является диммером, который изменяет скважность выходного напряжения для нагрузки, которая приспособлена для этого. Такие реле – только с коммутацией переменного тока, и включаются/выключаются 100 раз в секунду.

Схема с фиксацией и управлением кнопками (защелка)

Управление твердотельным реле с фиксацией включения

Управление твердотельным реле с фиксацией включения

Схема включения интересна тем, что можно включать – выключать нагрузку, используя только две кнопки – Пуск и Стоп. То есть, схема такая же, как и при использовании обычного реле. Точнее, магнитного пускателя. Важно, что управляющее напряжение равно напряжению питания нагрузки.

Схема нарисована тайваньскими инженерами, попробуем разобраться в ней.

Кстати, её же можно использовать для коммутации и переменного, и постоянного тока.

Схема работает таким образом. Исходно управляющее напряжение поступает на клемму 3 ТТР с источника питания через НЗ контакты кнопки Стоп. При нажатии кнопки Пуск (слева на схеме) напряжение с другого полюса источника поступает через НО контакты на клемму 4 ТТР. Реле включается, напряжение на клемме 1 появляется, и подается через резистор (вверху схемы) на клемму 4. Прошла доля секунды, кнопку Пуск можно отпускать, нагрузка питается до тех пор, пока не будет нажата кнопка Стоп.

Схемы включения трехфазных твердотельных реле

Трехфазное твердотельное реле, схема подключения.

Трехфазное твердотельное реле, схемы подключения.

Тут источник трехфазного напряжения – справа по схемам, нагрузка – слева. Управляющее напряжение может быть любым (переменным или постоянным).

Кроме того, коммутация может быть как по двум фазам, так и по трём, это важно! Подробнее ниже.

Реверсивные твердотельные реле

Существуют также специальные трехфазные твердотельные реле для реверса двигателей, у которых два управляющих входа.

Пример включения трехфазного реле – на фото ниже:

Включение трехфазного твердотельного реле

Включение трехфазного твердотельного реле

Как видно, реле не совсем трехфазное, одна фаза подается на двигатель постоянно, что может стать причиной опасности.

На корпусе реле напечатана его схема включения, где всё понятно. Реле реверсивное, и у него два входа – Forward и Reverse (Вперёд/Назад). Для реверса фазы L1 и L2 меняются местами.

Важно – внутри реле нет блокировки от одновременного включения в обоих направлениях, и ее надо обеспечить аппаратно (блокировочные контакты кнопок/реле) и программно (если управление – от контроллера). Если это не предусмотреть, то вероятна ситуация, когда силовые выходы 1, 2, 3, 4 будут замкнуты накоротко :( .

Выбор твердотельных реле, защита и особенности работы

Обычное реле и контактор без особых проблем выдерживают кратковременные перегрузки до 150 и даже 200% от номинала. Особенно, если не коммутировать нагрузку с таким током, а повышать ток после замыкания, и понижать перед размыканием.

Обычные контакты могут выдержать и кратковременный ток КЗ, если сработает защита с правильной уставкой тока. Просто, возможно, придётся потом контакты почистить.

Твердотельные реле от перегрузок страдают сильнее, за пол периода портятся безвозвратно, и контакты потом не почистить, из-за отсутствия таковых.

Это как в звукотехнике. Ламповая техника при перегрузках чувствует себя нормально, только слегка “потеет”, а транзисторы начинают жутко искажать сигнал и могут выйти из строя. За это до сих пор так ценятся ламповые усилители, за их мягкий, бархатный звук на предельных мощностях. Другое дело, что источников качественного сигнала сейчас практически нет, всё заполонил mp3 128kbps, и то в лучшем случае. Но это тема отдельной статьи…

Если при выборе контактора достаточно выбрать запас в 10-20% и защитить его обычным автоматом, то с твердотельными устройствами всё сложнее.

Поэтому для твердотельных реле рекомендуется для активной нагрузки (лампы, ТЭНы) запас по номинальному току в 2-4 раза. При пуске асинхронных двигателей из-за большого пускового тока запас по току нужно увеличить до 6-10 раз.

То есть, трехфазная твердотелка Fotek TSR-40AA-H на 40А, показанная на фото чуть выше, на своих 40 амперах работать вряд ли будет. Мощность двигателя, которую можно коммутировать в данном случае – от 2,2 кВт до 5 кВт. Причём двигатель 5 кВт (это около 10А) должен запускаться обязательно на холостом ходу, с минимальным пусковым моментом, а нагрузку к нему прикладывать можно после пуска и разгона.

Кстати, с индуктивной нагрузкой твердотельные реле могут вести себя неадекватно, у меня бывали проблемы. В случае высокоиндуктивных нагрузок (трансформаторы, катушки с магнитопроводами, электрические звонки, и т.п.) нужно параллельно нагрузке включать RC-цепь (снабберную цепь из последовательных резистора и конденсатора) для уменьшения влияния противо-ЭДС. Кроме того, эта цепь уменьшает общую индуктивность нагрузки, т.е. делает её более активной. И ТТР легче работать.

Читайте также:
Преимущества использования металлических труб в отопительных системах

Напоследок – защита при КЗ

Производители рекомендуют использовать специальные предохранители для твердотельных приборов:

  • gR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов(более быстродействующие , чем gS)
  • gS – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов, при повышенной загрузке линии.
  • aR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов от короткого замыкания.

Такие предохранители стоят дорого (сравнимы со стоимостью самого твердотельного реле), поэтому в большинстве случаев можно использовать защитные автоматы класса В. Чем же они хороши и как они спасут наши твердотельные реле от выгорания при КЗ?

Напомню, в 99% везде встречаются автоматы класса С. Класс D ставят в качестве вводных рубильников и при больших пусковых токах (мощные двигатели, трансформаторы). А класс В – самый чувствительный, срабатывает раньше всех.

Кстати, гуру электрики и электропроводки, cs-cs.net, предлагает дома ставить автоматы только В класса. И некоторые производители – рекомендуют ставить В класс на электроплиты, водонагреватели – туда, где нет двигателей и пусковых токов.

Почему – поясню на графике.

Кривые отключения

Кривые отключения или токо-временные характеристики

Подробно про выбор защитного автомата рассказано в другой статье.

Но мы вернёмся к нашему трехфазному твердотельному реле Fotek TSR-40AA-H на 40А, про которое я писал выше. Чтобы его гарантированно защитить от КЗ, надо обязательно поставить вот такой автомат:

Автомат В6

Автомат с характеристикой В6 (обведено красным)

Он мгновенно сработает при токе 20…30 Ампер и спасет твердотелку. А от перегруза надо будет поставить мотор-автомат на ток 4-6,3 А. И это всё будет питать двигатель на 2,2 кВт, лучше меньше. Либо ТЭН, тогда мотор-автомат не нужен.

Пишите в комментариях, у кого какой опыт по применению!

Полезные файлы, возможно, написано информативнее, чем у меня:

• Твердотельные реле Фотек / Твердотельные реле Фотек. Руководство пользователя. Рассмотрена вся линейка Fotek, даны рекомендации по применению и схемы включения., pdf, 757.78 kB, скачан: 4101 раз./
• Твердотельные реле – устройство и принцип работы / Подробно изложено, как устроены и работают твердотельные реле, приведены схемы включения, и т.п. Автор, отзовись!, pdf, 414.19 kB, скачан: 4610 раз./

Где купить твердотельные реле

Если вы живете в крупном городе, то лучше конечно поехать в ближайший магазин – и через час реле можно устанавливать. Но, например, у меня в Таганроге такие реле – только под заказ, и купить их можно только через фирмы в Ростове.

Поэтому, на сегодняшний день лучший вариант – покупать твердотельные реле в интернете, через АлиЭкспресс. Цены примерно те же, но минус в том, что доставка может быть около месяца.

Пишите в комментариях, у кого какие вопросы, отзывы и опыт по применению!

Как подключить частотный преобразователь к электродвигателю

Подключение частотного преобразователя к электродвигателю

Преобразователь частоты переменного тока уже много лет применяются при строительстве электромеханических приборов и агрегатов. Они позволяют модулировать частоту для того, чтобы регулировать скорость вращения вола электрического двигателя.

Частотники позволили подключать трёхфазный электрический двигатель к однофазной сети питания, при этом, не теряя мощности. При старинном типе подключения, через емкий конденсатор, большая часть мощности двигателя терялась, КПД существенно снижалось, обмотки электрического двигателя сильно перегревались.

Подключение частотного преобразователя к электродвигателю

Всех этих проблем удалось избежать, применением частотного преобразователя. При этом очень важно соблюдать правильное подключение частотного преобразователя к электрическому двигателю.

Некоторые особенности подключения любого частотника в связку с электрическим двигателем.

Во-первых

Из соображений безопасности эксплуатации прибора, при подключении частотника (или любого иного прибора) к сети питания, обязательно нужно устанавливать защитный автомат. Автомат устанавливается перед частотником.

При этом если частотный преобразователь подключается в сеть с трёхфазным напряжением, то установить необходимо автомат тоже трёхфазный, но с общим рычагом отключения.
Это позволит отключить питание от всех фаз одновременно, если хотя бы на одной фазе будет короткое замыкание или сильная перегрузка.

Если преобразователь частоты подключается в сеть с однофазным напряжением, то соответственно применяется автомат однофазный. Но при этом, в расчет берётся ток одной фазы, умноженный на три.

Подключение частотного преобразователя к электродвигателю

При подключении трёхфазного автомата, его рабочий ток определяется током одной фазы.

Однозначно запрещено устанавливать защитный автомат в разрыв нулевого кабеля, как при однофазном подключении, так и при трёхфазном. Такое подключение только внешне выглядит идентичным (ошибочно понимать, что цепь одна и не важно, где её разрывать).
На самом деле, в случае разрыва фазовых кабелей, при срабатывании автомата, питание полностью отключается и на цепях прибора не будет фаз вовсе. Это безопасно. А при срабатывании автомата с разорванным нулём, работа прибора прекратиться. Но при этом, обмотки двигателя и цепи частотника останутся под напряжением, что является нарушением правил техники безопасности и опасно для человека.

Читайте также:
Осенняя переСадка лилий — необходимое мероприятие

Также, не при каких условиях не разрывается заземляющий кабель. Как и нулевой, они должны быть подключены к соответствующим шинам напрямую.

Подключение частотного преобразователя к электродвигателю

Во вторых

Следует подключить фазовые выходы частотного преобразователя к контактам электрического двигателя. При этом обмотки электрического двигателя следует подключить по принципу «треугольник» или «звезда». Тип выбирается исходя из напряжения, которое вырабатывает частотник. Как правило, к каждому инвертеру приложена инструкция, в которой подробно расписано, как соединяются обмотки двигателя для подключения конкретного частотника. Схема подключения частотного преобразователя к 3-х фазному двигателю также должна быть приведена в инструкции.

Обычно на корпусах двигателей приведены оба значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются по принципу треугольника. В других случаях по принципу звезды. Схема подключения частотного преобразователя также должна быть приведена в паспорте частотника. Там же обычно приводятся и рекомендации по подключению.

Подключение частотного преобразователя к электродвигателю

В третьих

Практически к каждому преобразователю частоты в комплекте прилагается выносной пульт управления. Несмотря на то, что на самом корпусе частотника уже есть интерфейс для ввода данных управления и программирования, наличие выносного пульта управления является очень удобной опцией.

Пульт монтируется в месте, где удобнее всего с ним работать. В некоторых случаях, когда преобразователь частоты несколько уступает в пылевой защите и защите от влаги, сам частотник может быть установлен вдали от двигателя, а пульт управления рядом, для того, чтобы не бегать к шкафу управления и не регулировать обороты там.

Всё зависит от конкретных обстоятельств и требований производства.

Подключение частотного преобразователя к электродвигателю

Первый пуск и настройка преобразователя частоты

После подключения к преобразователю частоты пульта управления, следует рукоятку скорости вращения вала двигателя перевести в наименьшее положение. После этого нужно включить автомат, тем самым подать питание на частотник. Как правило, после включения питания должны загореться световые индикаторы на частотнике и, при наличии светодиодной панели, на ней должны отобразиться стартовые значения.

Принцип подключения цепей управления частотного преобразователя не является универсальным. Нужно соблюдать указания, указанные в инструкции к конкретному частотнику.

Для первого запуска двигателя потребуется нажать кратковременно клавишу пуска на частотнике. Как правило, эта кнопка запрограммирована на пуск двигателя по умолчанию на фабрике.

Подключение частотного преобразователя к электродвигателю

После пуска, вал двигателя должен начать медленно вращаться. Возможно, двигатель будет вращаться в противоположную сторону, отличную. От необходимой. Проблему можно решить программированием частотника на реверсное движение вала. Все современные модели преобразователей частоты поддерживают эту функцию. Можно воспользоваться и примитивным подключением фаз в другом порядке фаз. Хотя это долго и не рентабельно по затрате времени и сил электромонтёра.

Дальнейшая настройка предполагает выставления нужного значения оборотов двигателя. Нередко на частотника отображается не частота вращения вала двигателя, а частота питающего двигатель напряжения, выраженная в герцах. Тогда потребуется воспользоваться таблицей, для определения соответствующего значения частоты напряжения частоте вращения вала двигателя.

Подключение частотного преобразователя к электродвигателю

При монтаже и обслуживании, а также замене преобразователя частоты важно соблюдать ряд рекомендаций.

  • Любое касание рукой или иной частью тела токоведущего элемента может отнять здоровье или жизнь. Это важно помнить при любой работе со шкафом управления. При работе со шкафом управления следует отключить входящее питание и убедиться что именно фазы отключены.
  • Важно помнить, что некоторое напряжение может ещё оставаться в цепи, даже при угасании световых индикаторов. Посему, при работе с агрегатами до 7 кВт, после отключения питания рекомендуется прождать минут пять не меньше. А при работе с приборами более 7 кВт, прождать нужно не менее 15 минут после отключения фаз. Это даст возможность разрядиться всем имеющимся в цепи конденсаторам.
  • Каждый преобразователь частоты должен иметь надёжное заземление. Заземление проверяется согласно правилам профилактических работ.
  • Строго запрещено использовать в качестве заземления нулевой кабель. Заземление монтируется отдельным кабелем отдельно от нулевой шины. Даже при наличии и нулевой шины и шины заземления, при соответствии их нормам электромонтажа, соединять их запрещено.
  • Важно помнить, что клавиша отключения частотника не является гарантией обесточивания цепей. Эта клавиша всего лишь останавливает двигатель, при этом ряд цепей может оставаться под напряжением.

Подключение частотного преобразователя к электродвигателю

Подключение частотного преобразователя к электродвигателю осуществляется с применением кабелей, сечение которых соответствует тем характеристикам, которые указаны в паспорте частотника. Нарушение норм в меньшую сторону недопустимо. В большую сторону, может быть не целесообразно.

Прежде чем как подключить частотный преобразователь к электродвигателю, важно убедиться в соответствии условий, при которых будет работать преобразователь частоты. Фактически, условия должны соответствовать рекомендациям, приведённым в инструкции.

Подключение частотного преобразователя к электродвигателю

В каждом конкретном случае, подключение частотника может сопровождаться рядом обязательных условий. Чтобы узнать, как подключить частотник к 3 фазному двигателю схемы, которого есть в наличии. Сначала изучаются схемы. Если в них всё понятно, подключение выполняется при строго следовании инструкции. Если что-то не понятно, не следует выдумывать самостоятельно и полагаться на свою интуицию. Нужно связаться с поставщиком или производителем, для получения соответствующих указаний.

Читайте также:
Отделка фундамента дома под камень: проводим работы по отделке цоколя своими руками с фото инструкцией

[wpfmb type=’warning’ theme=2]Лучше дождаться помощи специалиста, чем потом ремонтировать сломанную технику. Случай-то не будет гарантийным.[/wpfmb]

Трёхфазные твердотельные реле + основы применения

Трёхфазные твердотельные реле и основы применения приборов на практике

Твердотельные реле находят место в широком спектре применений для переключения электрических нагрузок, включая профессиональное оборудование, к примеру — системы отопления, вентиляции и кондиционирования воздуха. Однако для лучшего понимания относительно того, как применять трёхфазные твердотельные реле и управлять, требуются отдельные сведения. В частности, сведения о разделении нагрузок на две основные категории: нагрев и управление движением.

Трёхфазные твердотельные реле (ТТР) – основы применения

Очевидно, что обозначенные применения (резистивный элемент / электродвигатель) далеко не всеобъемлющая группа, поскольку существует ряд других применений, выходящих за рамки указанных двух категорий. Например — системы освещения и распределения электроэнергии.

Однако большинство инженеров-проектировщиков, использующих трёхфазные твердотельные реле, применяют устройства именно к одному из двух указанных общих типов трёхфазных систем. Основное внимание, как показывает картинка ниже, уделяется резистивным элементам и электродвигателям.

Трёхфазные твердотельные реле и разделение нагрузки

Блок-схема упрощённого вида управляемыми приборами ТТР: слева – термически-резистивная нагрузка (ТРН); справа – моторная нагрузка; ТТР – трёхфазное твердотельное реле; Тн – нагрузочный ток; Нн – нагрузочное напряжение; У – управляющий сигнал

Несмотря на то, что каждое применение индивидуально и требует особой проверки, сосредоточение внимания на этих двух основных категориях позволяет обобщить характеристики. Также обобщаются последующие требования, предъявляемые к трёхфазным твердотельным реле, используемым для выполнения функций переключения.

Более того, ограничение внимания мощными системами, использующими трёхфазные сети для питания систем, охватывает некоторые из наиболее требовательных коммерческих и промышленных условий, в которых сегодня используются трёхфазные твердотельные реле.

Трёхфазные твердотельные реле – определение и описание

Исполнение устройства под три фазы, по сути, представлено отдельными однофазными реле, заключёнными в одном корпусе с общим входом. Соответственно, все три отдельных устройства питаются током одновременно.

Инженеры-электрики, кстати заметить, нередко используют три отдельных однофазных устройства для переключения питания на трёхфазной системе. Обычно это делается по желанию или когда по тем или иным причинам не представляется возможным применение именно трёхфазного твердотельного реле.

Однако более распространённым и упрощённым подходом следует рассматривать использование трехфазного твердотельного реле для обеспечения функции переключения. Такой подход упрощает электромонтаж и обычно уменьшает общую потребность в пространстве внутри конструкционной панели.

Трёхфазные твердотельные реле - сборка интеллектуального характера из десятка приборов

Пример целой сборки на основе ТТР с коммутацией на три фазы – своего рода интеллектуальный регулятор напряжения, построенный из десятка приборов, работающих совместно

Основными характеристиками твердотельных реле — однофазных или трёхфазных, являются:

  • бесконтактное включение и выключение, что означает отсутствие дуги, дребезга контактов или акустического шума;
  • высокая скорость переключения;
  • долговечность работы;
  • низкие требования к входной мощности управления;
  • отключение при нулевом токе, что существенно минимизирует электрические переходные процессы, особенно при переключении индуктивных систем;
  • включение при нулевом напряжении, что минимизирует скачки тока в обмотках и связанные переходные процессы.

Трёхфазные твердотельные реле предназначены для управления трёхфазными нагрузками переменного тока, которые в противном случае могли бы переключаться при помощи других – электромеханических, ртутных или иных контакторов.

Способы коммутации на трёхфазные твердотельные приборы

Для трехфазного резистивного нагрева обычно используются трёхфазные твердотельные реле с переходом через нуль. Эти версии устройств переключают питание нагрузки в точке пересечения нулевого напряжения каждой фазы, минимизируют пусковые токи.

Приборы статичного включения рекомендуются для переключения индуктивных нагрузок — электродвигателей, компрессоров, трансформаторов, где желательно включать три фазы одним моментом. Все приборы переменного тока (за исключением специальных версий, построенных с полевыми транзисторами) отключают выход при нулевом токе.

Отключение проходит независимо от того, управляются ли приборы нулевым напряжением или статичным включением. Таким образом, уменьшаются переходные процессы, вызванные открытием нагрузки посредством магнитного поля, которое сводится к нулю.

Трёхфазные твердотельные реле на охлаждающем радиаторе

Пример радиаторной сборки под прибор ТТР на три фазы, предназначенной для рассеивания тепла, выделяемого схемой при максимальных токовых нагрузках

При включении твердотельного реле в трёхфазные схемы необходимо учитывать: рассеивание тепловой мощности прибора по причине потерь в выходных силовых полупроводниках. Этот момент нередко требует использования внешних радиаторов (теплоотводов) для поддержания допустимой рабочей температуры.

Электрические переходные процессы, передаваемые по линиям электропередач или создаваемые переключением реактивных нагрузок, могут потребовать дополнительной защиты от переходных процессов. Также приходится учитывать выбор включения нулевого или ненулевого напряжения в зависимости от типа нагрузки.

Стандарты безопасности для трёхфазных твердотельных реле

Наиболее распространённые номинальные категории относятся к применениям для резистивных нагрузок и электродвигателей. Основное различие между этими двумя номиналами заключается в токах.

Трёхфазные твердотельные реле для электродвигателей необходимо рассчитывать на работу, как с током заторможенного двигателя, так и с током полной нагрузки. Таблица ниже показывает три наиболее распространённых стандарта под трёхфазные твердотельные реле для работы с электродвигателями.

Читайте также:
Односпальные кровати с ящиками

Таблица стандартов ТТР под номинальные моторные нагрузки

Стандарты Классификация
UL508 Контроллер электродвигателя
IEC62314 Моторная нагрузка, LC B
IEC 60947-4-2 Контроллер электродвигателя, AC-53a

Стандарты, отмеченные таблицей, требуют, чтобы переключатели, предназначенные для управления нагрузкой электродвигателя, выдерживали токи полной нагрузки. В результате, конкретный прибор будет иметь разные номинальные значения тока для резистивных нагрузок или нагрузок двигателя.

По сути, номинальная резистивная нагрузка трёхфазного твердотельного реле снижается, когда имеет место применение к нагрузкам двигателя. Например, твердотельный прибор ТТР, способный выдерживать резистивный ток 50А, фактически рассчитывается как ТТР мощностью 17А, при использовании в системах управления электродвигателем.

Приборы ТТР для трехфазных асинхронных двигателей

Исторически наиболее распространенными устройствами, используемыми для переключения мощности на асинхронные двигатели, являются электромеханические реле и контакторы. Однако по мере роста спроса на улучшенные характеристики и надёжность работы, трёхфазные твердотельные реле находят всё большее применение.

Как и в случаях с резистивной нагрузкой, управление электродвигателем может быть выполнено при помощи:

  1. Трёх отдельных ТТР,
  2. Одного трёхфазного прибора.
  3. Двух (или одного сдвоенного) ТТР, если это позволяет спецификация.

Явными преимуществами твердотельных реле для управления трёхфазным асинхронным двигателем отмечаются:

  • исключение механической усталости конструкции;
  • работа без контакта, без шума, без дуги;
  • высокоскоростное переключение;
  • низкая входная мощность управления;
  • отсутствие катушек индуктивности;
  • отключение нагрузки при нулевом токе;
  • долгий срок службы в отличие от механических реле и контакторов;
  • изоляция входа / выход до 4000В переменного тока;
  • полное соответствие директиве по ограничению вредных веществ.

Пуск и остановка мотора твердотельным прибором ТТР

Большинство применений трехфазных электродвигателей ограничиваются только функциями включения / выключения. Например, промышленный вентилятор обычно работает только в одном направлении, обеспечивая циркуляцию воздуха, поэтому мотор вентилятора достаточно только включать и выключать.

Компрессор — еще один пример, когда для правильной работы двигателя просто требуется подключение к трём фазам цепи питания переменного тока. Для таких применений обычно используется простое трёхфазное твердотельное реле, контактор или пускатель для подачи питания одновременно на все три обмотки статора мотора. Используется один входной сигнал управляющий контактором.

Трёхфазные твердотельные реле в разных вариантах включения

Варианты ТТР для реализации управления асинхронным двигателем с помощью монтируемых на панели приборов, дополненных охлаждающим радиатором

Трёхфазным системам переменного тока характерен сдвиг каждой фазы на 120° относительно двух других фаз. То есть, твердотельный прибор ТТР с нулевым напряжением перехода будет подключать каждую фазу последовательно, а не одновременно, как это необходимо.

Также по причине фазовых сдвигов, связанных с асинхронными двигателями, реле может не включиться из-за недостаточного тока фиксации через выходные тиристоры до того, как линейное напряжение превысит нулевое окно.

В некоторых случаях реле может работать неравномерно, в полуволновом режиме, обеспечивать питание только одной или двух фаз двигателя. Поэтому рекомендуется статичное включение (иногда называемое «моментальным» или «асинхронным» включением) твердотельных реле.

Выход прибора статичного включения переключает фазы в пределах 100 мкс подаваемого входного сигнала, независимо от амплитуды напряжения синусоидальной волны переменного тока. Таким образом, подача всех трёх фаз на обмотку электродвигателя выполняется одновременно. Сдвиги фаз между током и напряжением не влияют на характеристики включения трёхфазного твердотельного реле.

Критерии выбора приборов для управления электродвигателями

Условия переходного тока также необходимо учитывать при выборе трёхфазных твердотельных реле для использования с электродвигателями. В зависимости от размера мотора и нагрузки, приложенной к статору, пусковой ток при первом включении может в 5-7 раз превышать нормальный рабочий ток.

Эта перегрузка, потенциально достигающая значения тока заторможенного ротора двигателя, будет постепенно уменьшаться до номинального значения тока полной нагрузки. Происходит это в течение нескольких циклов переменного тока по мере того, как электродвигатель начинает вращаться. Однако применяемое реле и соединения должны соответствовать перегрузкам, возникающим в процессе запуска.

Также необходимо учитывать возможность остановки электродвигателя при определённых условиях, когда линейный ток будет равен или больше тока заторможенного ротора. В этом случае необходимо использовать защиту от перегрузки по току, как твердотельного прибора ТТР, так и самого электродвигателя.

Для надежности и безопасности рекомендуется обеспечить защиту от переходных процессов для всех твердотельных реле, управляющих трёхфазными асинхронными моторами. Такая защита может быть доступна внутри прибора ТТР или применяться внешним модулем.

Чаще всего используются варисторы, хорошо рассеивающие мощность, но несколько медленно реагирующие на быстрые переходные процессы. Однако двунаправленные диодные ограничители бросков напряжения (TVS-диоды) обеспечивают оптимальные характеристики для быстрых переходных процессов, несмотря на более низкие показатели рассеяния мощности, чем у варисторов на основе окиси металла.

Видеоролик — использование прибора под термо-резистивную нагрузку

На виде, представленное ниже, демонстрируется практическое применение прибора, в частности, для управления термо-резистивной нагрузкой (электрическими нагревателями). Внедряя в схему трёхфазные твердотельные реле, можно эффективнее управлять электрическими ТЭН.

Как правило, современные схемные решения предполагают использование приборов совместно с цифровыми микроконтроллерами, что позволяет полностью автоматизировать процесс работы.

Читайте также:
Плюсы и минусы угловых распашных шкафов, базовые модели, нюансы выбора

При помощи информации: Crydom

КРАТКИЙ БРИФИНГ

Z-Сила — публикации материалов интересных полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мульти-тематическая информация — СМИ .

Что такое твердотельное реле и как его правильно использовать

Во всех электрических цепях приходится включать и отключать приборы и устройства. Для этого используют коммутационные аппараты, это может быть, как простой выключатель или рубильник, так и реле, контакторы и т.д. Сегодня мы рассмотрим один из таких приборов — твердотельное реле, поговорим о том, что это такое, как выбрать и подключить в цепь управления нагрузкой.

Содержание статьи

Что такое твердотельное реле и как его правильно использовать

Что это такое

Твердотельное реле — это устройство, построенное на полупроводниковых элементах и силовых ключах, таких как симисторы, биполярные или МОП-транзисторы. В англоязычных источниках твердотельные реле называют SSR от Solid State Relay (что в дословном переводе эквивалентно русскому названию).

Как и у электромагнитных реле и других коммутационных приборах они предназначены для управления слабым сигналом нагрузкой с бо́льшим напряжением или током.

Отличия от электромагнитных реле

Обычные реле, как и все электромагнитные коммутационные приборы работает следующим образом — есть катушка на которую подается ток от системы управления или кнопочного поста. В результате протекания тока через катушку возникает магнитное поле, которое притягивает якорь с контактной группой. После этого контакты замыкаются и по ним начинает протекать ток в нагрузку.

У твердотельных нет катушки управления и нет подвижной контактной группы. Что внутри твердотельного реле вы можете видеть ниже. В нём, как было сказано выше, вместо силовых контактов используются полупроводниковые ключи: транзисторы, симисторы, тиристоры и другие в зависимости от сферы применения (правая часть фотографии).

Твердотельное реле в разобранном виде

Это есть главное отличие полупроводникового реле от электромагнитного. В связи с этим у твердотельного значительно больше срок службы, поскольку нет механического износа контактной группы, также стоит отметить что и быстродействие полупроводниковых реле выше, чем у электромагнитных.

Кроме отсутствия механического износа нет и искр или дуг при коммутации, как и звуков от ударов контактов при переключении. Кстати если нет искр и дуговых разрядов при коммутации – твердотельные реле могут работать во взрывоопасных помещениях.

Сравнение

Плюсы у твердотельных реле по сравнению с электромагнитными следующие:

2. Есть данные о том, что их наработка на отказ порядка 10 миллиардов переключений, что в 1000 и более раз превышает ресурс электромагнитных реле.

3. Если для электромагнитных реле импульсные перенапряжения практически не страшны, то электронная схема полупроводникового реле в большинстве случаев выходит из строя, если не было принято схемотехнических решений по ограничению этих импульсов. Поэтому сравнивать эти приборы по количеству переключений не всегда корректно.

4. Быстродействие полупроводниковых реле составляет доли и единицы миллисекунд, тогда как у электромагнитного от 50 мс до 1 с.

5. Энергопотребление на 95% ниже чем потребление катушки электромагнитных аналогов.

Однако эти плюсы прикрывается рядом недостатков:

Полупроводниковые реле греются во время работы. В тепло выделяется мощность равная произведению падения напряжения на силовом ключе (порядка 2 вольт) на силу тока через него протекающего;

При перегрузке и коротких замыканиях есть высокая вероятность выхода из строя силового ключа, перегрузочная способность обычно составляет 10In в течении 10 мс — одного периода в сети с частотой 50 Гц (может отличаться в зависимости от используемых компонентов);

Автоматический выключатель, скорее всего, не успеет сработать прежде, чем реле выйдет из строя при КЗ;

При импульсных перенапряжениях (скачки напряжения) – срок службы твердотельного реле может закончится моментально.

У твердотельных реле есть ток утечки (до 7-10 мА) в связи с этим, если они стоят в цепи управления, например, светодиодных светильников — последние будут мигать аналогично ситуации с выключателем с подсветкой. Соответственно на фазном проводе будет напряжение даже когда реле отключено!

В следующей таблице приведены общие характеристики твердотельных реле серий TSR (трёхфазных) и SSR (однофазных) от производителя «FOTEK» (кстати одни из самых распространенных). В принципе у других производителей характеристики продукции будут похожими или такими же.

Сопротивление изоляции >50 МОм/500В DC
Электрическая прочность изоляции вход/выход Выдерживает 2,5 кВ АС в течение 1 минуты
Ток срабатывания Не более 7.5 мА
Перегрузочная способность До 10 номинальных токов в течение 10 мс
Метод коммутации При переходе через ноль (в моделях для переменного тока) или мгновенно через оптрон (для постоянного тока)
Встроенная защита В серии SSR-F есть сменный предохранитель

Виды

Твердотельное реле можно классифицировать:

По роду тока (постоянный или переменный);

По силе тока (маломощные, силовые);

По способу монтажа;

По количеству фаз;

По типу управляющего сигнала (постоянным или переменным током, аналоговый вход для управления переменным резистором, в цепь 4-20 мА и т.д.).

Читайте также:
Ремонт электролобзика своими руками

По типу переключения – коммутация при переходе напряжения через ноль (в цепях переменного тока), или коммутация по управляющему сигналу (для регулировки мощности, например).

Реле для монтажа на печатную плату

Реле для монтажа на радиатор

Итак, по количеству фаз бывают одно- и трехфазное реле. А вот типов, управляющих сигналов гораздо больше. В зависимости от внутреннего устройства твердотельные реле могут управляться как постоянным напряжением, так и переменным.

Наиболее распространены твердотельное реле, которые управляются постоянным напряжением в диапазоне от 3 до 32 Вольт. При этом величина управляемого напряжения должно находиться в этом диапазоне, а не быть равной какой-то конкретной величине из него, что очень удобно при интеграции в системы с различным напряжением.

Также встречаются полупроводниковые реле, для управления которыми используется аналоговый сигнал:

0-10 вольт постоянного тока;

Переменным резистором 470-560 кОм.

При этом такими реле можно регулировать мощность на подключенном приборе, по принципу фазового управления. Такой же принцип регулировки используется в бытовых диммерах для освещения.

В таблице ниже вы видите виды сигналов управления твердотельных реле с фазовым методом управления от компании IMPULS.

Обратите внимание на последние буквы маркировки (LA, VD, VA), у большинства производителей они одинаковы, и говорят, как раз, о типе сигнала.

Виды сигналов управления твердотельных реле с фазовым методом управления от компании IMPULS

Как уже было сказано, в реле с фазовым управлением, в зависимости от величины управляющего сигнала изменяется напряжение на выходе, что отображено на графике ниже.

График изменения напряжения на выходе реле

Зависимость напряжения в нагрузки от управляющего сигнала

Распознать такое реле можно по условному изображению возле входных клемм, например, на фото ниже видно, что ко входу подключается переменный резистор 470-560 кОм.

Полупроводниковое реле Fotek

Есть и твердотельные реле с сигналом управления от сети переменного тока 220В, как изображено ниже. Они подходят для использования в качестве замены маломощных контакторов или электромагнитных реле.

Твердотельные реле с сигналом управления от сети переменного тока 220В

Маркировка и тип управления

Для определения «фазности» реле используют символы в начале маркировки:

Что эквивалентно однополюсным и трёхполюсным коммутационным приборам.

Сила тока также шифруется, например, FOTEK указывает её в виде: Pxx (смотрите – Каталог средств автоматизации FOTEK)

Где «хх» – это сила тока в амперах, например, P03 – 3 ампера, а P10 – 10 ампер.

Маркировка твердотельного реле

Если в маркировке есть буква H – то это реле предназначено для коммутации повышенного напряжения.

В маркировке данные о типе управления указаны в последних символах, она может отличаться у разных производителей, но зачастую она имеет такой вид и значение (данные собраны по разным производителям):

VA – переменный резистор 470-560кОм/2Вт (фазовое управление);

LA – аналоговый сигнал 4-20мА (фазовое управление);

VD – аналоговый сигнал 0-10V DC (фазовое управление);

ZD – управление 10-30V DC (коммутация при переходе через ноль);

ZD3 – управление 3-32V DC (коммутация при переходе через ноль);

ZA2 – управление 70-280V AC (коммутация при переходе через ноль);

DD3 – управление сигналом 3-32V постоянного тока цепью постоянного тока (коммутация напряжения постоянного тока);

DA – управление сигналом постоянного тока, коммутация цепи переменного тока.

AA – управление сигналом переменного тока (220В), коммутация цепи переменного тока.

Проверим это на практике, допустим вы столкнулись с таким изделием как на рисунке ниже, и хотите узнать, что оно собой представляет.

Если внимательно изучить надписи возле клемм для подключения проводов уже станет ясно, что это реле для управления цепями переменного тока от 90 до 480 вольт, при этом управление происходит также переменным током с напряжением от 80 до 250 вольт.

Если же видна только маркировка, то: «SSR» – однофазное; «-10» – номинальная сила тока 10 ампер; «АА» – управление переменным током, коммутация переменного тока; «H» – для коммутации повышенного напряжения в силовой цепи — до 480В (если бы H не было, то было бы до 380-400В).

И для закрепления и лучшего понимания изучите следующую таблицу с маркировками и характеристиками твердотельных реле.

Маркировки и характеристики твердотельных реле

Устройство

Внутренняя схема твердотельного реле зависит от того на какой ток оно рассчитано (постоянный или переменный) и вида сигнала управления им. Рассмотрим некоторые из них.

Начнем с реле, которое управляется постоянным током и коммутируется при переходе через ноль. Иногда их называют «твердотельное реле Z-типа».

Устройство твердотельного реле z-типа

Здесь контакты 3-4 – это вход управляющего сигнала, в котором используется управление с помощью оптопары, которая служит для гальванической развязки входных и выходных цепей.

Блок контроля перехода через 0, или как его называют Zero Cross Circuit – отслеживает фазу напряжения в питающей сети и когда оно переходит через ноль производит коммутацию цепи (включение или отключение). Такой способ также называют Zero Voltage Switch, он позволяет снизить броски тока при включении (так как напряжение в этот момент равняется нулю) и всплески ЭДС-самоиндукции при отключении нагрузки.

Сигналы управления

Схематически это реализуется следующим образом:

Читайте также:
Свайные, столбчатые и другие фундаменты

Схема реле Siemens

Здесь напряжение от сети подаётся на блок с симистором и блоком который отслеживает переход через ноль. Элементы Q1, R3, R4, R5, C4 при высоком напряжении блокируют открытие тиристора T2, который управляет силовым симистором T1. Тогда коммутация возможна только при напряжении в сети близком к нулю. Входная цепь выполнена н U1 – транзисторной оптопаре, которая подаёт сигнал на управляющий электрод драйвера симистора T2, через Q2.

Реле мгновенного включения устроены несколько иначе чем, реле с коммутацией при переходе через ноль. В них отсутствует каскад ZCC.

При управлении переменным током схема отличается лишь наличием на входе выпрямителя (диодного моста).

Электрическая схема реле

А при коммутации цепей постоянного тока симистор заменяют транзистором.

Устройство реле DC-DC

Также есть универсальные реле для постоянного и переменного тока, где используется сборка из транзисторов. Вообще есть множество схем выходных каскадов твердотельных реле, ниже приведены примеры схемотехники разных моделей от такого производителя, как International Rectifier.

Примеры схемотехники разных моделей International Rectifier

В реле с фазовым методом управления дело обстоит несколько иначе. Оно подобно диммеру умеет регулировать мощность нагрузки (выходное напряжение), для этого на вход подают аналоговый сигнал — напряжение, ток или подключают переменное сопротивление. В качестве силового элемента здесь применяется тиристор. Но учтите, что из-за такого метода регулировки возникают помехи в сети, для подавления которых применяют сетевые фильтры с синфазными дросселями, но это совсем другая тема.

Реле с фазовым методом управления

Отличия коммутации при переходе через ноль от фазовой коммутации вы можете увидеть на рисунке ниже.

Отличия коммутации при переходе через ноль от фазовой коммутации

Схемы подключения и особенности использования

На самом деле схема подключения твердотельных реле почти ничем не отличается от обычных. Как правильно подключить? Давайте разбираться.

Схема подключения твердотельного реле

Если вам нужно заменить обычное реле 220В с управлением от переменного тока 220В – используйте следующую схему, на примере LDG LDSSR-10AA-H. На схеме для примера изображено подключение через обычный выключатель или тумблер. Вместо этого сигнал включения может подаваться от термостата, регулятора и других устройств.

Если вам нужно управлять с помощью низковольтного сигнала цепью 220В, то можно использовать FOTEK HPR-80AA (смотрите – Каталог электронных тведотельных реле FOTEK).

Схема подключения реле FOTEK HPR-80AA

В этой схеме в качестве источника низкого напряжения постоянного тока используется блок питания 12VDC, которые широко распространены как блоки питания для светодиодных лент. Кстати вы даже можете управлять таким твердотельным реле подав на вход напряжение от зарядного устройства мобильного телефона, ведь на его выходе 5В, что больше минимального сигнала в 3В.

Учтите и то, что напряжение управления нужно отключать полностью, так как у каждого реле есть определенные параметры, при которых оно работает, например, у приведенного выше напряжение отключения порядка 1 вольта, а сработать оно может не при 3 номинальных вольтах, а уже при 2.5 (данные приведены усредненные, для примера, и могут отличаться в зависимости не только от конкретного изделия, но и от условий окружающей среды и монтажа.)

Но напомним, что есть и реле с фазовым методом управления. Схемы подключения таких реле проиллюстрированы далее (иллюстрация из инструкции к ним).

Схемы подключения реле

Вопрос – для чего нужны такие реле и где их используют? Поиск ответа на данный вопрос был недолгим, стоило мне ввести начало запроса и сразу выдало варианты использования в качестве силового ключа для управления нагревательными элементами от терморегуляторов с выходом 4-20 мА или 0-10В.

Терморегулятор с выходом

Кстати, для промышленного применения есть и отечественные разработки, например, ОВЕН ТРМ132 и другие модели, которые могут работать с выходными сигналами 4-20мА и 0-10В.

Однако использование твердотельного реле для управления мощной нагрузкой невозможно без охлаждения. Для этого используют пассивное (простой радиатор) или активное охлаждение (радиатор+кулер).

Охлаждение твердотельного реле

Рекомендации о выборе кулеров приводятся в технической документации на конкретное твердотельное реле, поэтому давать универсальные советы нельзя.

Заключение

Твердотельные реле могут использоваться как замена электромеханическим в ряде случаев. Самыми популярными вариантами в быту является замена контактора в электрокотле, по причине его громкого хлопка при включении, соответственно и включение ТЭНов станет бесшумным.

Схема устройства регулятора мощности на основе однофазного твердотельного реле

А также реализация различных мощных регуляторов мощности для тех же ТЭНов и прочего, для чего применяется твердотельное реле с аналоговым входом сигнала от переменного сопротивления (тип VA).

Радиолюбители же могут собрать простейшее твердотельное реле, на основе оптодрайвера для симисторов с ZCC типа MOC3041 и подобных.

Схема простейшего твердотельного реле, на основе оптодрайвера для симисторов с ZCC типа MOC3041

Я считаю, что это достойные изделия для использования их в различных средствах автоматизации, к тому же они не требуют обслуживания (разве что чистки радиаторов от пыли), а срок службы, можно сказать, что неограничен. Они прослужат в разы дольше чем контакторы при условии отсутствия перегрузок, перегрева, КЗ и импульсных перенапряжений!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: