Закон Джоуля-Ленца
Электричество — неотъемлемый признак нашей эпохи. Абсолютно всё вокруг завязано на нём. Любой современный человек, даже без технического образования, знает, что электрический ток, текущий по проводам, способен в некоторых случаях нагревать их, зачастую до очень высоких температур. Казалось бы, это заведомо всем известно и не стоит упоминания. Однако, как объяснить это явление? Почему и как происходит нагрев проводника?
Опыты Ленца
Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.
Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц «застрял» с расчётами, так как параметры его смоделированной цепи «источник энергии — проводник — потребитель энергии» сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.
При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало — невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?
Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший «нагреватель» — стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся — тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.
Закон Джоуля-Ленца
В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.
Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока , равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:
Q — количество выделяемого тепла (Джоули)
I — сила тока, протекающего через проводник (Амперы)
R — сопротивление проводника (Омы)
t — время прохождения тока через проводник (Секунды)
Почему греется проводник
Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы «трётся», соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.
Из формулы также следует — чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом — будет неравномерный нагрев в месте скрутки. В итоге — подгорание с последующим пропаданием контакта.
Применение закона Джоуля-Ленца в жизни
Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины — первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.
Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.
Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку
Заключение
Таки образом, можно сказать что на законе Джоуля-Ленца держится чуть ли не вся электрика и электротехника. Открыв этот закон, появилась возможность уже заранее предсказать некоторые будущие проблемы в освоении электричества. Например, из-за нагрева проводника передача электрического тока на большое расстояние сопровождается потерями этого тока на тепло. Соответственно, чтобы компенсировать эти потери нужно занизить передаваемый ток, компенсируя это высоким напряжением. А уже на оконечном потребителе, понижать напряжение и получать более высокий ток.
Закон Джоуля-Ленца неотступно следует из одной эпохи технологического развития в другую. Даже сегодня мы постоянно наблюдаем его в быту – закон проявляется всюду, и не всегда люди ему рады. Сильно греющийся процессор персонального компьютера, пропадание света из-за обгоревшей скрутки «медь-алюминий»,выбитая вставка-предохранитель, выгоревшая из-за высокой нагрузки электропроводка – всё это тот самый закон Джоуля-Ленца.
Раз уж заговорили про ДжОУля )) Читайте статья про ОУ — Операционный усилитель.
Нагревание проводников электрическим током
Одним из свойств электрического тока является нагрев проводников, по которым он протекает. Этот эффект был замечен многими исследователями, но его понимание пришло только выяснения механизма взаимодействия заряженных частиц с атомами и молекулами проводников. Нагрев приводит к выделению тепла и повышению температуры, а количество выделяемого тепла можно рассчитать с помощью формулы закона Джоуля-Ленца.
Почему нагреваются проводники
Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.
Рис. 1. Электрический ток в проводнике нагревает проводник
Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.
Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .
Закон Джоуля-Ленца
На основании этого и других экспериментов можно сделать следующие предположения:
- чем больше сопротивление, тем сильнее нагреваются проводники. То есть количество теплоты Q, которое выделяется при протекании электрического тока по проводнику, прямо пропорционально величине сопротивления проводника R;
- чем больше сила тока, тем большее количества тепла выделяется. При возрастании тока большее количество частиц проходит через поперечное сечение проводника в единицу времени, то есть число столкновений возрастает, а значит больше энергии передается атомам проводника.
Формулу для вычисления количества тепла получили независимо друг от друга в 1842 г. английский физик Джеймс Джоуль и российский ученый Эмилий Ленц:
Q — количество теплоты, Дж;
Согласно закону Ома:
где U — напряжение, В.
Пользуясь этой формулой, закон Джоуля-Ленца может быть представлен еще в одном варианте, когда известно напряжение на участке проводника, а сила тока неизвестна:
Формулы закона Джоуля-Ленца справедливы тогда, когда работа, совершаемая электрическим током идет исключительно на нагревание. Если в цепи есть потребление энергии на выполнение механической работы (электродвигатель) или на совершение химических реакций (электролит), то для расчета необходимо применять другие формулы.
Плюсы и минусы от нагрева электрическим током
- Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
- Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.
Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.
Что мы узнали?
Итак, мы поговорили кратко о нагревании проводников электрическим током. Нагрев проводников происходит из-за того, что электроны, движущиеся упорядоченно с определенной скоростью, сталкиваются с атомами вещества и отдают часть своей энергии, которая переходит в тепло. Количество тепла можно определить, применив формулу Джоуля-Ленца.
Тепловое действие тока, плотность тока и их влияние на нагрев проводников
Под тепловым действием электрического тока понимают выделение тепловой энергии в процессе прохождения тока по проводнику. Когда через проводник проходит ток, образующие ток свободные электроны сталкиваются с ионами и атомами проводника, нагревая его.
Выделяемое при этом количество теплоты можно определить с помощью закона Джоуля-Ленца, который формулируется так: количество теплоты, выделяемое при прохождении электрического тока через проводник, равно произведению квадрата тока, сопротивления данного проводника и времени прохождения тока через проводник.
Приняв ток в амперах, сопротивление в омах, а время в секундах, получим количество теплоты в джоулях. А учитывая что произведение тока на сопротивление — есть напряжение, а произведение напряжения на ток — мощность, в результате оказывается, что количество выделенной теплоты в данном случае равно количеству электрической энергии, переданной данному проводнику во время прохождения по нему тока. То есть электрическая энергия преобразуется в тепловую.
Получение тепловой энергии из электрической широко применяется с давних времен в различной технике. Электронагревательные приборы, такие как обогреватели, водонагреватели, электрические плиты, паяльники, электропечи и т. д., а также электросварка, лампы накаливания и многое другое используют именно этот принцип для получения тепла.
Но в большом количестве электрических устройств нагрев, вызываемый током, вреден: электродвигатели, трансформаторы, провода, электромагниты и т. д. – в данных устройствах, не предназначенных для получения тепла, нагрев снижает их КПД, мешает эффективной работе, и даже может привести к аварийным ситуациям.
Для любого проводника, в зависимости от параметров окружающей среды, характерно определенное допустимое значение величины тока, при котором проводник заметно не нагревается.
Так, например, для нахождения допустимой токовой нагрузки на провода, используют параметр «плотность тока», характеризующий ток, приходящийся на 1 кв.мм площади поперечного сечения данного проводника.
Допустимая плотность тока для каждого проводящего материала в определенных условиях своя, она зависит от многих факторов: от вида изоляции, интенсивности охлаждения, температуры окружающей среды, площади поперечного сечения и т. д.
К примеру для электрических машин, где обмотки изготавливают, как правило, из меди, величина предельно допустимой плотности тока не должна превышать 3-6 ампер на кв.мм. Для лампы накаливания, а точнее для ее вольфрамовой нити, – не более 15 ампер на кв.мм.
Для проводов осветительных и силовых сетей предельно допустимая плотность тока принимается исходя из вида их изоляции и площади поперечного сечения.
Если материалом проводника служит медь, а изоляция резиновая, то при площади сечения, например, в 4 кв.мм допускается плотность тока не более 10,2 ампер на кв.мм, а если сечение 50 кв.мм, то допустимая плотность тока будет всего 4,3 ампера на кв.мм. Если же проводники указанной площади не имеют изоляции, то допустимые плотности тока будут соответственно 12,5 и 5,6 ампер на кв.мм.
С чем же связано понижение допустимой плотности тока для проводников большего сечения? Дело в том, что проводники с существенной площадью поперечного сечения, в отличие от проводников малого сечения, имеют больший объем проводящего материала расположенного внутри, и получается что внутренние слои проводника сами окружены нагревающимися слоями, которые мешают отводу тепла изнутри.
Чем больше площадь поверхности проводника по отношению к его объему, – тем большую плотность тока способен выдержать проводник не перегреваясь. Неизолированные проводники допускают нагрев до более высокой температуры, так как от них тепло отводится прямо в окружающую среду, изоляция этому не препятствует, и охлаждение происходит быстрее, поэтому для них допускается более высокая плотность тока чем для проводников в изоляции.
Если превысить допустимый для проводника ток, он начнет перегреваться, и в какой-то момент его температура окажется чрезмерной. Изоляция обмотки электродвигателя, генератора или просто проводки, может в таких условиях обуглиться или загореться, что приведет к короткому замыканию и пожару. Если же говорить о неизолированном проводе, то он при высокой температуре может просто расплавиться и разорвать цепь, в которой служит проводником.
Превышение допустимого тока принято предотвращать. Поэтому в электрических установках обычно принимают специальные меры с целью автоматического отключения от источника питания той части цепи или того электроприемника, в котором случилась перегрузка по току или короткое замыкание. Для этого служат автоматические выключатели, плавкие предохранители и другие устройства, несущие аналогичную функцию — разорвать цепь при перегрузке.
Из закона Джоуля-Ленца следует, что перегрев проводника может произойти не только из-за превышения тока через его поперечное сечение, но и из-за более высокого сопротивления проводника. По этой причине для полноценной и надежной работы любой электрической установки крайне важно сопротивление, особенно в местах соединения друг с другом отдельных проводников.
Если проводники соединены не плотно, если их контакт друг с другом не качественный, то сопротивление в месте соединения (так называемое переходное сопротивление в месте контакта) окажется выше чем для цельного участка проводника той же длины.
В результате прохождения тока через такое некачественное, не достаточно плотное соединение, место данного соединения будет перегреваться, что чревато возгоранием, выгоранием проводников или даже пожаром.
Чтобы этого избежать, концы соединяемых проводников надежно зачищают, облуживают и оснащают кабельными наконечниками (впаивают или прессуют) или гильзами, которые обеспечивают запас на переходное сопротивление в месте контакта. Такие наконечники можно плотно закрепить на клеммах электрической машины при помощи болтов.
К электрическим аппаратам, предназначенным для включения и выключения тока, также применяют меры по уменьшению переходного сопротивления между контактами.
Закон Джоуля-Ленца
Если включить в сеть обычную лампочку или электрочайник, спираль этих приборов начнет нагреваться и выделять тепло. А при работе вентилятора теплового излучения нет, хотя он тоже подключается к сети. Этот феномен объясняет закон Джоуля-Ленца, который широко используется в прикладной электротехнике. В данном материале мы познакомимся с ним, узнаем определение, формулы и физический смысл правила.
О чем эта статья:
8 класс, 10 класс
Закон Джоуля-Ленца
На примере многих бытовых приборов понятно, что если через участок цепи проходит электроток и при этом не совершается какая-либо работа, то происходит нагревание проводника. Иногда оно идет на пользу — например, в лампе накаливания или в аппарате дуговой сварки. Но в других случаях тепловой эффект нежелателен — например, перегрев электрической проводки в здании может вызвать пожар. Поэтому в наших интересах управлять таким эффектом, и правило Джоуля-Ленца определяет, от чего зависит тепловое действие тока.
Правило было сформулировано в результате опытов двух ученых — англичанина Джеймса Прескотта Джоуля и российского физика Эмилия Христиановича Ленца. Поскольку ученые работали независимо друг от друга, новый закон назвали двойным именем.
Закон Джоуля-Ленца кратко: нагревание проводника или полупроводника прямо пропорционально его сопротивлению, времени действия тока и квадрату силы тока.
Поскольку сопротивление проводника определяют такие характеристики, как его длина, площадь и проводимость, верны следующие утверждения:
количество теплоты в проводнике снижается при увеличении площади его сечения;
тепловой эффект снижается при уменьшении длины проводника.
Это легко проиллюстрировать, подключив к источнику питания две лампы с разным сопротивлением вначале последовательно, а после — параллельно. При последовательном подключении лампа с большим сопротивлением будет светить ярче, а при параллельном — наоборот.
Природа тепла в проводниках
Разберемся, как происходит нагрев проводника и каким образом этот процесс отвечает формулировке законе Джоуля-Ленца. Как известно, электрический ток представляет собой направленный поток электронов, если речь идет о металлах, и направленный поток ионов — если о растворах электролитов. Проводником называют такой металл, в котором много свободных электронов.
При подключении проводника к сети электроны начинают двигаться в одном направлении под действием электрического поля. При движении они сталкиваются с атомами проводника и передают им свою кинетическую энергию. Чем выше скорость заряженных частиц, тем чаще происходят такие столкновения и больше выделяется кинетической энергии. Часть этой энергии трансформируется в тепло, поэтому проводник нагревается.
Высокая сила тока означает, что через сечение проводника проходит много свободных электронов и столкновения происходят часто. Соответственно, частицам проводника передается много энергии, и он греется сильнее. Именно поэтому в законе Ленца-Джоуля говорится о том, что количество выделяемой теплоты пропорционально квадрату силы тока.
Теперь представим, что мы соединили в одну цепь последовательно два проводника, при этом у второго сечение больше, чем у первого. Во втором столкновений частиц будет меньше, а значит — выделится меньше тепла. Вспоминаем, что удельное сопротивление проводника обратно пропорционально его сечению. Чем меньше сечение материала, тем выше его сопротивление и тем сильнее он нагревается. Вот мы и описали тепловое действие тока в соответствии с законом Джоуля-Ленца.
Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.
Уравнение Джоуля-Ленца
Посмотрим, как данный закон выражается в математическом виде. Допустим, на некоем участке цепи проходит электрический ток и вызывает нагревание проводника. Если на этом участке нет каких-либо механических процессов или химических реакций, требующих энергозатрат, выделенная проводником теплота Q равна работе тока A.
Q = A
Поскольку А = IUt, где I — сила тока, U — напряжение, а t — время, Q = IUt.
Теперь вспомним, что напряжение можно выразить через сопротивление и силу тока U = IR. Подставим это в формулу:
Q = IUt = I(IR)t = I 2 Rt
Q = I 2 Rt
Мы выразили количество теплоты в проводнике через сопротивление — эта формула для закона Джоуля-Ленца называется интегральной.
Но бывает так, что сила электрического тока неизвестна, зато есть информация о напряжении на участке цепи. В таком случае нужно использовать закон Ома:
I = U/R
Исходя из этого, закон Джоуля-Ленца можно записать в виде дифференциальной формулы:
Напомним, что такое уравнение, как и предыдущее, верно только в том случае, когда вся работа электрического тока уходит на выделение тепла и нет других потребителей энергии.
Итак, у нас есть две формулы для определения количества теплоты, выделяемой проводником при прохождении через него электричества:
При расчетах используют следующие единицы измерения:
количество тепла Q— в джоулях (Дж);
силу тока I — в амперах (А);
сопротивление R — в омах (Ом);
время t — в секундах (с).
Практическое применение
Применение на практике закона Джоуля-Ленца заключается в том, что тепловым действием электрического тока можно управлять, подбирая проводники с нужным сопротивлением. К примеру, для электрических нагревательных приборов, которые должны выделять максимум тепла, выбирают проводники с высоким сопротивлением.
Низкое сопротивление, напротив, позволяет проводнику практически не нагреваться при прохождении тока. Поэтому на промышленных предприятиях с усиленными требованиями к пожаробезопасности для прокладки линий электропередач используется медный кабель. Удельное сопротивление меди сечением 1 мм 2 равно 0,0175 Ом, в то время как у алюминия оно составляет 0,0271 Ом. Медь практически не нагревается, чем снижает риск возгораний.
Примеры задач
Задача 1
Электроплита подключена к сети с напряжением 220 В. Какое количество тепла выделит ее нагревательный элемент за 50 минут, если известно, что сила тока в цепи составляет 10 А.
Решение:
t = 50 мин = 3000 с;
Для того, чтобы рассчитать количество тепла, в данном случае подойдет интегральная формула Джоуля-Ленца Q = I 2 Rt, однако мы не знаем, чему равно сопротивление R. Однако согласно закону Ома R = U/I.
Вычислим сопротивление: R = U/I = 220/10 = 22 Ом.
Подставим имеющиеся данные в формулу:
Q = I 2 Rt = 10 2 × 22 × 3000 = 6 600 000 Дж = 6,6 МДж.
Ответ: плита выделит 6,6 мегаджоулей тепла.
Задача 2
Для обогрева дома требуется, чтобы отопительный прибор выделял 125 кДж тепла в час. Напряжение в электрической сети составляет 220 В. Каким должно быть электрическое сопротивление проводника, чтобы обеспечить данную теплоотдачу?
Почему нагревается проводник с током, и как правильно выбирать проводник?
Почему при прохождении электрического тока проводник нагревается? Ответ на этот вопрос крайне важен при выборе материалов и сечения проводников, а также в контексте борьбы с последствиями токов короткого замыкания.
Поэтому в нашей статье мы постараемся максимально подробно, но при этом на доступном языке, разобраться с причинами нагрева, его этапами и использовании этого свойства проводников на практике.
Причины нагрева проводников и их этапы
Так почему при прохождении тока проводник нагревается? Ответ на этот вопрос независимо друг от друга дали Джеймс Джоуль в 1841 году, и Эмиль Ленц в 1842 году. В связи с этим. открытый ими закон получил название Джоуля-Ленца.
Закон Джоуля-Ленца
Звучит этот закон, как: мощность тепла, выделяемого в единице объема проводника, равна произведению напряженности электрического тока к его плотности. Если из этого определения вам сразу все стало понятно, то наша статья не для вас. Мы поговорим с теми, кто, как и я, когда услышал первый раз это определение, удивленно хлопал глазами.
Поэтому мы будем по минимуму использовать формулы, а постараемся на пальцах объяснить, что значит этот закон:
- Сам проводник имеет определенное сечение, а также сопротивление.
- Значение этого сопротивления обычно не высоко, но оно есть.
- Кроме того, раз у нас по проводнику протекает ток, то он имеет определённый потенциал или напряженность.
- Оперируя этими понятиями мы и определим почему проводник с током нагревается.
Соответственно, чем большее количество времени протекает ток по проводнику, чем большее сопротивление проводника, чем больший ток протекает по проводнику, тем быстрее и больше он нагревается. Вот так характеризует нагревание проводников электрическим током закон Джоуля-Ленца.
Обратите внимание! Электрическая проводимость, а соответственно и сопротивление проводника, напрямую зависит от его температуры. Чем она выше, тем больше сопротивление проводника. Поэтому получается лавинообразный процесс. Проводник греется, его сопротивление растет, и он греется еще больше. В связи с этим, процессу отвода тепла от проводника следует уделять самое пристальное внимание.
Отвод тепла от проводника и этапы нагрева
В связи с приведенным выше свойством, с нагревом проводников нужно бороться. Достигается это за счет выбора оптимального сечения провода, а также материала. То есть, сечение провода должно соответствовать максимально допустимому току, который может протекать в нем, а также нормально выдерживать кратковременные перегрузки.
- Дабы все это правильно рассчитать, мы должны знать не только как закон Джоуля-Ленца нагревание проводников электрическим током рассчитывает, но и как посчитать отдачу тепла проводником. Ведь наш проводник находится не в вакууме, и отдает тепло окружающей среде.
- Сразу давайте определимся, какие параметры влияют на теплоотдачу проводника. Прежде всего, это сечение проводника, ведь вполне логично, что чем большая площадь проводника соприкасается с окружающим воздухом, тем быстрее он ее отдает.
- Следующим важным критерием является так называемый коэффициент теплоотдачи материала, из которого выполнен проводник. Или как этот параметр еще называют — теплопроводность материала. Ведь ни для кого не секрет, что теплопроводность у материалов разная.
- Ну и последним параметром, является разность между температурой окружающей среды и материалом проводника. Ведь как говорит инструкция: чем больше этот перепад, тем быстрее материал отдает тепло.
- Исходя из этих всех параметров, влияющих на теплоотдачу, можно предположить, что для любого проводника и любого тока имеется, так называемая, установившаяся температура. То есть, температура, при которой существует равенство получаемой энергии от протекания тока и отводимого тепла.
- Такую температуру называют установившимся режимом. И она должна быть в пределах рабочей температуры провода. Рабочая температура провода обычно ограничена типом используемой изоляции.
Например, для ПВХ-изоляции она не должна превышать 70⁰С, а разнообразные материалы с пропиткой лаком способны выдерживать температуры до 120⁰С и выше.
Выбор проводников
Как вы можете понять из всего выше написанного, проводники следует выбирать из условий нагрева. Дабы при определённом токе их температура не превышала максимально допустимую. Сделать это можно своими руками, благодаря таблицам в ПУЭ. Но и в этом вопросе сначала необходимо разобраться.
- В ПУЭ приведены таблицы, по которым можно осуществить выбор проводников по нагреву, экономической плотности тока, способу прокладки и другим параметрам. Но для начала мы точно должны знать условия монтажа и работы провода. Давайте разберем, зачем это нужно.
- Но прежде разберемся с током. Ни для кого не секрет, что в течение времени ток в проводнике будет меняться. И какой из них следует рассматривать в качестве результирующего для выбора сечения проводника, непонятно. На этот вопрос нам отвечает п. 1.3.2 ПУЭ, который гласит, что для выбора следует применять средний ток в течении получаса, наиболее нагруженного в течении суток.
- Теперь давайте определимся с температурой. В разных местах монтажа она может достаточно сильно отличаться от рабочей температуры. Это следует учитывать. Поэтому в табл. 1.3.3 ПУЭ приведены поправочные коэффициенты для различной кабельно-проводниковой продукции, если температуры в которых будет работать кабель, отличается от рабочей.
- Выбор проводников по нагреву, плотности тока, обязательно учитывает способ прокладки проводника. Это может быть одиночная прокладка по воздуху, а может быть монтаж в земле или в трубах. Согласитесь, теплоотведение у таких проводников будет существенно отличаться. И это обязательно стоит учитывать.
- Так же следует учитывать количество жил проводника. То ли у нас охлаждается одна жила, то ли три, которые соприкасаются.
Обратите внимание! В табл. 1.3.12 ПУЭ имеется отдельный поправочный коэффициент при монтаже проводников пучками. Ведь если у нас рядом проложено сразу несколько проводников, то они вполне могут нагревать друг друга и заметно хуже остывать. И это так же должно учитываться.
- В итоге мы сможем воспользоваться таблицами 1.3.4. – 1.3.11 ПУЭ, которые предписывают, проводники какого сечения использовать для различных токов, и при использовании проводников с различными типами изоляции.
Обратите внимание! Если вы выбираете проводник для жилого помещения, то сразу должны исключить провода и кабели, выполненные из алюминия. Ведь согласно новых норм ПУЭ от 2001 года, такой материал в электропроводках жилых зданий запрещен.
- Но эти таблицы можно применять для не самых мощных линий. При расчётах межсистемных высоковольтных линий с напряжением в 330кВ и выше, опираться на эти таблицы нельзя. В этом случае используют таблицу 1.3.36 ПУЭ, которая позволяет выбрать сечение проводников, исходя из экономической плотности тока.
Из этого видео Вы узнаете о требованиях к проводникам.
Использование нагрева материалов при прохождении тока на практике
Но далеко не всегда нагрев проводников электрическим током является негативным фактором. Люди научились применять этот закон и себе на пользу. И примеров такого применения масса. Мы приведем лишь некоторые из них.
- Самым первым и самым распространенным, является применение закона Джоуля-Ленца в электрических печах, нагревателях и фенах. Для этого, в качестве проводника, сознательно устанавливается материал с большим сопротивлением. При протекании через него тока выделяется большое количество тепла, которое потом соответствующим образом используется человеком.
- Еще одним способом применения этого закона, являются теплые полы в вашем доме или греющие кабели, которые применяют в строительстве и канализационных системах. Для них так же сознательно применяется проводник с высоким сопротивлением.
- И даже лампочка «Ильича» отчасти использует этот закон. Только тут материал подбирается не только исходя из сопротивления, но и из яркости свечения в нагретом состоянии.
- Но нагревание электрическим током проводников нашло свое применение и в электроэнергетике. Все вы наверняка сталкивались с предохранителями. Суть данного защитного устройства сводится к тому, что в емкость с условно неизменными параметрами помещают проводник определенного сечения. При протекании через этот проводник тока больше допустимого, он перегорает, и тем самым обесточивает защищаемую сеть.
И это только несколько примеров на скорую руку. На самом деле их на порядок больше. Поэтому нагрев проводников при протекании по ним электрического тока это далеко не всегда «зло».
Вывод
Мы очень надеемся, что теперь вы знаете, как можно объяснить нагревание проводника электрическим током, и понимаете сам процесс. Так же вы должны понимать, с чем связаны определенные ограничения при выборе сечения проводников, и не будет ли слишком велика цена игнорирования этих правил.
Ведь все из них основаны на реальных практических и научных обоснованиях, а электротехника очень жестоко наказывает тех, кто их игнорирует.
Выделение тепла при нагревании проводников электрическим током
Нагревание проводников электрическим током происходит в результате взаимодействия потока заряженных микрочастиц с атомами и молекулами металла. При этом начинается выделение тепла. Его количество рассчитывается на основании закона Джоуля-Ленца. На базе такого явления в XIX веке была изобретена лампа накаливания. В современном мире существует множество приборов теплового действия.
Теоретическая основа
Для того чтобы разобраться, почему при прохождении электрического тока проводник нагревается, нужно знать, что по нему движутся отрицательно заряженные электроны. В процессе их перемещения они постоянно сталкиваются с микрочастицами металла, передавая им энергию и приводя их в движение.
Теплота при прохождении тока выделяется по той причине, что кинетическая энергия молекул и атомов проводника постоянно возрастает.
В результате поток электронов повышает внутреннюю энергию проводящего элемента.
Отсюда вытекают 2 следствия:
- Чем больше сопротивление, тем больше нагрев проводника. Причем это явление имеет прямо пропорциональную зависимость.
- Количество теплоты в электричестве увеличивается в зависимости от силы тока.
Если рассмотреть этот процесс с точки зрения закона сохранения энергии, то сила тока движущихся электронов, сталкивающихся с микрочастицами металла, падает.
Однако она не может исчезнуть бесследно. Идет ее превращение в тепловую энергию проводника.
Закон Джоуля-Ленца
На основании существующего закона Джоуля-Ленца количество выделяющейся теплоты в проводе пропорционально квадрату силы тока, времени его прохождения и существующему сопротивлению металла. Расчет величины ведется по формуле:
Q — выделившаяся теплота;
I — сила проходящего тока;
R — сопротивление металла проводника;
Т — время, в течение которого идет протекание тока.
В том случае, когда сила тока неизвестна, но есть возможность измерить напряжение, формула изменяется. Согласно закону Ома I = U / R.
Это значение подставляется в основную формулу:
Q = I 2 RT = (U / R) 2 RT.
После сокращения получается окончательный вид:
Использовать эти формулы можно только в том случае, когда протекающий через проводник ток является постоянным и работает исключительно на нагревание. Если идет выполнение какой-либо механической работы, то расчеты носят другой характер.
Практические опыты
Для того чтобы проверить, как изменится температура проводника в зависимости от колебания параметров силы токи и сопротивления, можно провести некоторые опыты. Они носят следующий характер:
- Собирается цепь, в которую включаются источник питания и 2 нагревателя с разным сопротивлением. При прохождении электричества нагреватель с большим сопротивлением нагревается сильней. Это доказывает, что нагрев зависит от величины сопротивления.
- В электрическую цепь, кроме источника питания, подключаются лампочка, амперметр и реостат. Подается напряжение и лампочка загорается. Регулируя реостатом сопротивление при постоянном напряжении, нить накаливания будет изменять свою яркость. Это указывает на зависимость температуры проводника от силы тока.
Такие физические опыты должны проводиться в специальных лабораториях.
Параметры, влияющие на нагрев
Процесс нагрева проводов относится к негативному явлению, с которым требуется бороться. В противном случае произойдет повышенный расход энергии или возгорание цепи. Чтобы этого не происходило, нужно контролировать следующие показатели:
- Сечение провода. Этот размер должен выдерживать максимально допустимую нагрузку без нагрева. Расчет ведется с учетом влияния окружающей среды, поскольку проводник находится не в вакууме.
- Теплопроводность материала. Для проводников используется цветной металл: медь, алюминий.
- Разность температур между проводником и окружающей средой. Металл быстрее отдает тепло при большом температурном перепаде.
При разработке электрических цепей все эти факторы должны приниматься во внимание.
Использование в быту
Несмотря на негативные последствия нагрева, это явление находит применение на практике. Например, существуют нагреватели, где повышение температуры проводящих элементов взято за основу. Примером могут служить:
- электрочайники;
- фены;
- паяльники;
- сварочные аппараты.
С открытием электромагнитной индукции получил распространение метод нагрева высокочастотными токами.
Этим способом можно быстро нагреть индукционные плавильные печи или домашние плиты.
Все эти приборы разработаны на основе знания закона Джоуля-Ленца. Только применяя существующие формулы, можно сделать правильный расчет агрегата и выбрать проводящие материалы нужного сечения.