Неоновая лампа стартера. Маркировка?

Зачем нужен стартер для люминесцентных ламп

Газоразрядные источники света давно вошли в повседневную жизнь. Они применяются для освещения жилых и производственных помещений и дают устойчивое освещение. Оно достаточно стабильно, когда нет никакой деградации элементов в схеме.

В типичную схему входят осветительный прибор, катушка индуктивности и устройство запуска. Дроссель – обычная катушка индуктивности, также участвует в запуске. Но основная функция – защита. Катушка ограничивает напряжение при скачке. Она — самый долговечный элемент схемы.

Стартер нужен только для пуска схемы на газоразрядных лампах. Далее он не принимает участия в работе светильника.

Люминесцентная лампа (Она же газоразрядная или дневного света) является герметичной колбой. В ней расположены с разных сторон электроды. Внутренняя ее часть покрыта люминофором – веществом, которое светится при эмиссии электронов. Трубка содержит пары ртути.

Стандарт дает светильнику 10 секунд на включение с момента подачи напряжения.

Устройство стартера для лл (люминесцентной лампы)

Пусковое устройство – необходимый элемент схемы освещения на этом типе источника света. Это второй по важности элемент осветителя.

Классический стартер – вещь чувствительная к условиям эксплуатации, это самый недолговечный компонент системы. При его выходе из строя, осветительная система не может быть запущена.

Схема подключения стартера к лампам дневного света

При рассмотрении схемы становятся понятны функции, выполняемые стартером.

  • Включается в момент подачи напряжения питания,
  • В момент старта прогреваются катоды, так как без их прогрева эмиссия электронов не возможна.
  • Размыкает цепь после прогрева.

Схема биметаллического стартера всегда одна и та же. Существуют различные варианты исполнения.

Внешний вид стартера

Корпус зачастую изготавлен из пластика, контакты размещаются на пластине из текстолита (может использоваться и другой диэлектрический материал). Некоторые изготовители снабжают стартеры прозрачным смотровым окошком. Стартеры времен СССР имели корпуса из алюминия. Внутри всего два элемента: колба с биметаллическими контактами и конденсатор. Они включены параллельно. Конденсатор стартера требуется для сглаживания высоких токов, гасит дуговой разряд между электродами, также необходим для размыкания электродов. Конденсатор снижает износ стартера. Если конденсатора нет, то электроды могут спаяться в момент дугового разряда между ними. Как долго после будет работать схема – непредсказуемо. Дроссель (катушка индуктивности) необходим для создания импульса.

В колбе находятся два электрода, сама она заполнена инертным газом. Обычно применяют неон, реже – водородно-гелиевая смесь. Электроды биметаллические, подвижные. Разработаны две конструкци: либо два подвижных контакта (симметричный), либо один (несимметричный). Первый более распространен. Он дешевле при производстве. Пускатели старого образца стабильно работали при разбросе питающего напряжения в пределах 20 процентов. При большем отклонении от номинала работа не гарантировалась. Новые такой проблемы не имеют.

Принцип работы стартера

Компоненты пускового устройства рассмотрены. Как он работает?

  1. Нет напряжения – электроды внутри колбы разомкнуты.
  2. Подается напряжение питания. Между электродами стартера появляется тлеющий разряд, токи небольшие (обычно не более 50 мА).
  3. Тлеющий разряд ведет к разогреву электродов. Под действием температуры происходит обратимая деформация электродов. Разряд завершается с замыканием этих биметаллических электродов.
  4. Цепь замкнулась, начинается прогрев электродов для начала эмиссии.
  5. Электроды внутри колбы стартера начинают остывать и возвращаются в исходное положение. Цепь разрывается.
  6. Весь этот процесс приводил к появлению импульса высокого напряжения, проходящего через дроссель. Свет зажигается, яркость достигает нормативной.
  7. Стартер подключается параллельно источнику света. На его контактах напряжение ниже номинального. Уже не возникает тлеющего разряда, биметаллические контакты внутри колбы не разогреты. Сработать он не может самопроизвольно. Необходимый ток уходит на обеспечение эмиссии между катодами, это необходимо для свечения.

Схема подключения

Мощность источника света должна коррелировать с параметрами остальных компонентов. Если они не совпадают, то возможно либо, что схема вообще не запуститься, либо при запуске запуска электроды разрушатся из-за перегрева.

Для подключения двух лл не требуется дубляж схемы. Целесообразно сократить количество элементов. В этом случае высвобождается один из дросселей.

На второй схеме дополнительный газоразрядные лампы соединены последовательно, а стартеры включены в параллель. В остальном схемы идентичны. Различие будет в номинале дросселя. Он должен быть рассчитан на суммарную мощность ламп. Стартер должен соответствовать мощности лампы. Обычно, в схеме с двумя лампами, используют одинаковые мощности. Конденсатор желателен в параллели источнику переменного тока. Он предназначен для улучшения параметров питания. При мощностях ламп порядка 40 Ватт, обычно достаточно емкости от 2 до 10 мкФ. Напряжение конденсатора выбирается не ниже двукратного напряжения питания.

Виды стартеров, их основные параметры и маркировки.

Сейчас встречается новый вид – электронный. Это уже новинка. Конструктивно они выглядят точно также и полностью совместимы с «классикой». Можно заменить даже не задумываясь. Внутри вместо конденсатора и герметичных биметаллических пластин — электронная схема. Она выполняет аналогичные действия по запуску газоразрядного лампы. Изменять схему не потребуется. Из недостатков можно назвать только цену, она будет раз в пять выше, чем на «классику».

Читайте также:
САМОДЕЛЬНЫЙ POWERBANK 1600мА. Повербанк своими руками для экшенкамеры или видеорегистратора

  • Срок службы много больше.
  • При старении компонентов стартер не сработает, балластное устройство не перегреется.
  • Более широкий температурный диапазон.
  • Встроенная защита от перегрузки по току.
  • Исключаются полностью электромагнитные помехи при старте осветителя.
  • Фиксированного время прогрева электродов люминесцентной лампы, следовательно, повышается срок службы.
  • Источник света включается сразу без мерцания.

Сейчас есть и полностью готовые инженерные решения. Это так называемые ЭПРА – электронные пускорегулирующие аппараты.

Этот вид представляет собой металлический корпус, в котором размещена электронная схема, дополнительные элементы не потребуются. На вход приходит напряжение питания, выходы предназначены для подключения к электродам.

При необходимости легко выбрать устройство на требуемое количество ламп. Монтаж и схема существенно упрощаются. Применение ЭПРА существенно продлевает срок эксплуатации благодаря «теплому запуску». Отсутствие подвижных биметаллических контактов обеспечивает бесшумность старта. Свечение ламп будет ровным. ЭПРА обеспечивают стабилизацию параметров питания. Соответственно параметры электронного пускорегулирующего аппарата и ламп должны совпадать.

Такое решение сочетает достоинства электронных стартеров и простоту схемы подключения. Это полностью готовое решение. Одно устройство может применяют для нескольких ламп.

Из минусов – цена. Электронные компоненты дороже чем совокупная цена пускателя, конденсатора и дросселя. Что удобно, сама схема подключения как правило разрисована на самом устройстве, либо в инструкции. Также схемы всегда есть на сайтах заводов-изготовителей.

Маркировка однозначно идентифицирует стартер и прописана в ГОСТ Р МЭК 60155-99 «Стартеры тлеющего разряда для люминесцентных ламп».

Маркировка и особенности подключения стартеров для ламп дневного света

Стартер – это газоразрядная лампа небольших размеров с тлеющим зарядом. Колба, обычно из стекла, заполнена неоном или смесью гелия с водородом (инертный газ). Все это закрывается металлическим или пластмассовым корпусом. Возможно наличие смотрового окошечка.

Стартер для ламп дневного света

Изделие имеет 2 электрода, при этом различают виды:

  1. Несимметричная конструкция. Один электрод неподвижен, состав ограничивается одним материалом. Второй может двигаться, изготавливается из двух металлов.
  2. Симметричная конструкция. Оба электрода биметаллические. Этот тип сейчас наиболее распространен, так как имеет несколько преимуществ, по сравнению с предыдущим вариантом.

Изделие дополняется конденсатором, который сглаживает момент замыкания и размыкания контактов. Еще одна его функция – гасить электрическую дугу между контактами прибора при размыкании, что исключает возможность сваривания электродов, продлевая срок службы пускателя.

Различаются 3 этапа работы:

  1. Электрическая схема ЛДС составлена так, чтобы при включении все напряжение приходило к стартеру. Электроды изделия разомкнуты, в приборе формируется тлеющий заряд. По цепи проходит малый ток, который нагревает электроды, заставляя их выгибаться. Происходит замыкание.
  2. Через дроссель (также неотъемлемая часть) начинает течь ток, заставляя катоды пускателя нагреваться. В замкнутом состоянии, электроды стартера остывают и размыкаются. Дроссель, обладающий большой индуктивностью, создает импульс, который зажигает газ осветительной части.
  3. Устанавливается напряжение, равное рабочим параметрам лампы (обычно в два раза ниже номинально поступающего). Стартер подключен к ЛДС параллельно, так что через него проходит такой же ток. А его для создания тлеющего заряда уже недостаточно, так что электроды разомкнуты.

Если зажечь газ с первого раза не получилось, процесс повторяется. Согласно стандартам, включиться освещение должно не позже чем через 10 секунд после подачи тока.

Возможные неисправности

Люминесцентная трубка не зажигается. Что может быть:

  1. Поступающее напряжение из сети меньше 200 Вольт. При таких условиях пускатель может не сработать.
  2. Недостаточный тлеющий заряд. Со временем, этот показатель снижается. Наступает момент, когда электроды уже не замкнутся никогда, требуется замена.
  3. Время нагрева катодов ЛДС не хватает. Требуется замена на изделие с большим периодом замыкания контактов.

Осветительный прибор моргает:

  1. Уменьшенный тлеющий заряд приводит к срабатыванию пускателя во время работы лампы. Соответственно, газовая трубка гаснет, затем снова зажигается. Необходима срочная замена изделия.
  2. Свечение на концах лампы, при этом, вся она не загорается. Необходимо вынуть стартер, если свечение исчезло, пускатель нужно менять.

Область применения и критерии выбора

люминесцентные лампы

Стартеры для ламп дневного света применяются для зажигания люминесцентных осветительных приборов любой конфигурации при условии использования в схеме электромагнитного дросселя.

Используются в сети с рабочей частотой от 50 до 60 Герц с возможностью работы при 220 Вольтах, и менее (обычно 127 Вольт подается при последовательном подключении двух светящихся трубок).

Читайте также:
Настенные панно из дерева и метала для украшения жилья

Пускающее устройство не является дефицитным на рынке, поэтому найти его можно легко как на рынках городов, так и в магазинах по продаже бытовой техники.

На что же обращать внимание при покупке:

  1. Производитель. Наибольшим спросом пользуется производитель с брендом Филипс. Также можно использовать Осрам из России. Часто встречается АСД. Значительно дешевле стоят изделия из Китая с похожими названиями, но надежность прибора вызывает сомнения.
  2. Номинальное напряжение. Если используется двухламповая система подключения, то стартер должен быть рассчитан на 127 Вольт. Если одноламповая – 220. Этот факт обязательно освещен в маркировке.
  3. Мощность лампы. Пускатели различаются мощностью. Поэтому, при выборе нужно обращать внимание на этот факт.
  4. Огнестойкий корпус. При работе изделия, возникают условия для возгорания (электрическая дуга, перегрев). Корпус лампы обычно пластмассовый, легковоспламеняющийся. Поэтому, для своей безопасности, возможность появления огонька на стартере лучше исключить.

Характеристики и маркировка

Стартер для ламп дневного света

Необходимо выделить несколько основных характеристик прибора:

  1. Срок службы. Филипс, например, утверждает, что его устройства способны выдержать 6 тысяч включений. Недалеко от него и Осрам. Но это при условии нормальных параметров напряжения в сети и многих других факторов.
  2. Нормальный температурный режим. ГОСТ предусматривает необходимый разброс температур от +5 до 55. Если нужно использовать лампу в иных условиях, то потребуется поиск специального пускателя (есть такие, но дороже).
  3. Время подогрева катодов. Другими словами, продолжительность периода, когда электроды замкнуты. Разброс по этой характеристике у производителей большой, так что нужно обращать внимание на рекомендации изготовителя осветительной части устройства.
  4. Тип конденсатора в стартере. Наш производитель использует изделие из фольги, что является пережитком, но дешевле. Стартер может работать без конденсатора (или с вышедшим из строя), однако, срок службы прибора будет уменьшаться.
  5. Номинальное напряжение. Подключив в 220 Вольт пускатель на 127, можно испортить всю систему в один момент.

Наш ГОСТ:

  1. С большая – стартер.
  2. Цифры перед ней определяют мощность лампы (60, 90, 120).
  3. Цифры после говорят о напряжении (127 и 220).

Например, 90С – 220. Маркировка утверждает, что устройство рассчитано на лампу, мощностью 90 Ватт и напряжение 220 Вольт.

Западная маркировка:

  1. Лампы от 4 до 80 Вт с напряжением 220 Вольт – S10, FS-U, ST111.
  2. Напряжение 127 и мощность до 22 ватт – S2, FS-2, ST151.

Цены на изделия

Стоимость стартера зависит от качества электродов и бренда.

Пример из Белгорода:

  1. Филипс S10 стоит 18 рублей, а с такими же характеристиками, но китайский TDM – 4 рубля. При этом, продавец не скрывает, что электроды у дешевого варианта алюминиевые и гарантию на устройство не дает.
  2. Стартер TDM S2 алюминий – 3,90, а медный контакт – 5,5 рубля. При этом, Филипс будет стоить 27 рублей.

Из этих примеров видно, что разница в цене между хорошим и непонятным пускателем ощутимая, но срок службы также отличается.

Подключение лампы дневного света

Схема подключения люминесцентных ламп

Подключить такой прибор просто и электрическая схема также не требует особых знаний.

Разделяют два способа подключения – одноламповый и двухламповый:

  1. Одноламповая схема. К источнику питания последовательно подключается лампа и дроссель, а пускатель крепится параллельно лампе. На входных клеммах светящейся трубки может присутствовать конденсатор для улучшения характеристик тока.
  2. Двухламповый вариант. К системе электроснабжения последовательно подключаются две лампы и дроссель, а к каждой лампе параллельно крепится стартер. При этом. сумма мощностей пускателя должна соответствовать мощности дросселя.

Для подключения стартера нужен непосредственно прибор, а также обесточенная фаза. Для дополнительной безопасности можно использовать диэлектрические перчатки или пассатижи с хорошей изоляцией.

Стартер вставляется в предназначенный для него паз, и поворачивается по часовой стрелке до упора. Таким образом, клеммы фиксируются на токопроводящих пластинах. Это при условии заводской лампы.

Если хочется сделать надежней и крепче, то понадобится паяльник с припоем.

Подключение ЛДС без стартера:

Схема подключения ЛДС без стартера

Подключение ЛДС со стартером:

ЛДС со стартером

Проверка работоспособности и варианты без использования стартера

Вышедший из строя пускатель невозможно отличить по внешним признакам (если только не присутствует механическое повреждение).

Поэтому, в случае незажженной лампы, нужно:

  1. Заменить трубку на заведомо рабочую.
  2. Заменить стартер на заведомо рабочий.
  3. Проверить маркировку на соответствие параметров.

Наиболее распространенный и безопасный способ – использование электронного дросселя. На его корпусе присутствует подробная схема подключения, поэтому трудностей не возникнет.

Но при наличии необходимых знаний, пускатель можно заменить с помощью:

Читайте также:
Руководство по обустройству сухой стяжки пола

Неоновые индикаторные лампы с резистором (220В), делаем стенд для поделок (колхозинг, платы и тп)

Иногда требуется выяснить факт наличия сетевого напряжения, либо, например, обозначить выключатель в темноте. Самый простой элемент индикации — это маленькая неоновая лампа, которую можно через резистор напрямую подключить к сети 220 В, потребление будет минимальным, а эффект удастся достичь. Да, в современных условиях, светодиоды гораздо более популярны, но они требуют большей обвязки для таких целей, поэтому и в устройствах выпускаемых промышленностью (утюги, чайники и т.п.) — до сих пор с успехом используют неоновые лампочки. Под катом будет построение стенда для тестирования устройств 220 Вольт (по возможности безопасного) и немного моего балкона, который я оборудовал для создания поделок…

Неоновые лампочки пришли без трека, нашел я их в почтовом ящике. Посылка ехала около полутора месяцев. Внутри пакета со встроенной пупыркой лежали лампочки с припаянными резисторами в пакетике с защелкой Zip lock:

Количество соответствует заявленному. Вид и размеры одного экземпляра:

Резистор установлен на 147 КОм:

Пробуем подключить к сети 220 Вольт:

Точнее 230 :)

Такая розетка не фиксирует малые токи:

Подключим мультиметр, который фиксирует ток 1.2 мА:

Про сами неоновые лампочки. Свет лампы обладает малой инерционностью и допускает яркостную модуляцию с частотой до 20 кГц. Лампы подключаются к источнику питания через токоограничительный резистор так, чтобы ток через лампу был порядка 1 миллиампера. Использование лампы без резистора чрезвычайно опасно, поскольку может привести к перерастанию разряда в дуговой, с возрастанием тока через неё до значения, ограниченного лишь внутренним сопротивлением источника питания и подводящих проводов, и, как следствие, коротким замыканием и (или) разрывом баллона лампы. Напряжение зажигания лампы обычно не более 100 вольт, напряжение гашения порядка 40-65 вольт. Срок службы — 80 000 часов или более (ограничен поглощением газа стеклом колбы и потемнением колбы от распылённых электродов; «перегорать» в лампе просто нечему).

Теперь к применению… Вообще я их заказывал, чтобы заменить штатную лампочку в старом утюге, который использую для изготовления плат. Но раз у нас их много — грех не воспользоваться.
Учитывая, что я довольно часто тестирую устройства работающие с сетевым напряжением, решил собрать некий стенд для испытаний. Основные требования:
— безопасность, все таки это поделки и на столе во время тестов всякое возможно;
— удобное подключение своих приборов (розетка);
— индикация текущего тока и напряжения, а также потребляемой мощности;
— для тестирования коммутирующих устройств отдельная розетка с проводом и, желательно, с индикацией;
— возможность отключения обоих проводов питания устройства;
— минимальное влияние проводов на исследуемые процессы;
— более-менее приличный вид и компактность.

Для повышения безопасности прибора решил установить дифференциальный автомат категории «С» на 10 А, с током утечки 30 мА. А раз речь идет про автомат, то удобнее применить компактный щиток, тем более они недорогие. В качестве индикации выбрал такой блок, он удовлетворяет всем моим требованиям (80-260 В/20A AC ), обзоры на этот прибор уже были на муське (вот, вот, вот). Решил встроить этот прибор в компактный щиток:

Для подключения питания к своему стенду использовал типовой разъем C14, отсюда:

Расположить его решил сбоку, под него выпилил отверстие:

Крепил его винтами от разобранной микроволновки. В собранном виде:

Припаял провода: 3 по 2.5 мм2, контакты заизолировал клеевой термоусадкой:

Розетку для подключения тестируемых устройств использовал монтируемую на дин рейку. Собранное устройство:

Проверяем:

Но этого мне показалось мало… Довольно часто приходится тестировать коммутационный узел, поэтому хотелось интерфейс подключения нагрузок, также объединить с данным устройством. Для этого подойдет типовая розетка, я взял от Шнайдер Электрик (она, конечно, немного не в цвет, ну да ладно):

именно в нее планируется встроить обозреваемые неоновые лампочки. В качестве светорассеивателя взято оргстекло красного цвета:

Вот так выглядит лампочка через него:

Отпиливаем лобзиком маленький кусочек:

Край доработаем бормашинкой на стойке:

Примеряем стекло:

Меня устроило, нужно сверлить:

Примеряем, я специально край полученный в домашних условиях повернул к основанию розетки — так его меньше всего будет видно:

Обезжириваем стеклышко и розетку верхушками от процесса домашней дистилляции и клеим на суперклей:

Результат:

Далее возвращаемся к неоновым лампочкам. Меня не устроила длина выводов, поэтому перепаял резистор:

Приготовил проводок для подключения лампочки к розетке:

Надел термоусадку:

Припаял проводки:

Сверху одел общую клеевую термоусадку подходящего диаметра:

Итог:

Проверка:

Читайте также:
Правильное утепление стен в пенобетонном доме

Закрепить в розетке решил термоклеем:

Нужно было придумать чем закрыть остальное пространство вокруг лампы, решил, что фольга для этого подойдет отлично, но где ее взять. И тут пришла в голову мысль о новогодних подарках, спрятанных от детей на моем балконе мастерской. Пришлось перебрать не мало конфет, чтобы найти нужное. Оказалось, что современные производители активно экономят на фольге. Подходящий вариант:

Конфета была успешно съедена (да простят меня дети :) ), вкусная конфета придала новых сил. Результат:

Готовимся соединять щиток и нашу мега розетку, сверлим основание:

И боковину щитка:

Пластик боковины достаточно мягкий, поэтому решил его усилить изнутри текстолитом (ну да я же в названии писал про платы). Отбракованная плата еще поработает, использовал основание розетки как шаблон:

Примеряем:

Чтобы винтики не раскрутились, решил использовать отечественный анаэробный фиксатор резьбы АвтомастерГель от «Регион Спецтехно». Обзор этого замечательного фиксатора я делал тут:

Фиксатор бывает разных типов, я использовал самый могучий :). Наносим его на винты:

Результат:

С другой стороны:

Собираем крышку:

Подключаем провода:

Сразу скажу, что потянул с усилием все сидит плотно несмотря на разницу в диаметре.
Итог:

Ближе:

Включено:

На некотором удалении, также, все отлично видно:

С лампой в розетке (именно так и планируется использовать во многих ближайших тестах):

Без света выглядит так:

С максимальным светом индикатор тоже заметен:

Готовим входной провод для теста коммутирующих устройств (ПВС 2х2.5 мм2), пометил его красной термоусадкой:

Собираем вилку:

Если диаметр провода большеват для тестирования устройства, используем переход на тонкий провод (ШВВП 2х0.5мм2) через многоразовые универсальные клемники Ваго (именно в таких случаях целесообразно их использовать — для временного подключения). Так выглядит очередное тестируемое устройство, подключенное к изготовленному стенду, сразу после уборки на столе:

Само устройство на подоконнике:

Общий вид рабочего места тестировщика :):

Основным объектом тестирования, будут платы точечной сварки из данного обзора, и иные поделки для дачной автоматики.
Иллюстрация работы собранной конструкции в тестировании очередной поделки:

А так как коммутация осуществляется симистором, то на этом видео видно поведение индикатора, который в выключенном состоянии горит менее ярко, но не гаснет, об этой особенности симисторов следует помнить.

На этом заканчиваю свой длинный опус про достаточно простое, но очень нужное мне устройство. Всех поздравляю с наступающим Новым Годом! Надеюсь кому-то данная информация окажется полезной.

Если делать индикацию на светодиоде, то правильная схема будет выглядеть так:

В реале:

Если снизить емкость в 10 раз до 10нФ:

Сменил крышку розетки на белую в цвет ящика, из розетки засверлился в ящик, а в него врезал держатель неонки с красивым стеклышком:

в темноте

при ярком свете настольной лампы направленной на стенд тоже все видно:

Кстати, для тестирования импульсных блоков питания стенд тоже прекрасно подходит, диф автомат защищает от кз и превышения тока, а также от проблем связанных с касанием фазы. А во внешнюю розетку можно вставить лампочку как в обзоре и скоммутировать 4 провода прибора так, чтобы фаза шла через лампочку — очень удобно.

Стартер для люминесцентных ламп

Конструкция ламп газоразрядного типа обеспечивает стабильное свечение, а срок эксплуатации по сравнению со стандартными лампочками накаливания значительно выше. Вся работа этих устройств осуществляется с помощью специальной аппаратуры, в состав которой входит и стартер для люминесцентных ламп. Совместно с дросселем он принимает участие в запуске, защищает источник света от перенапряжения из-за высоких токов. Без стартера лампа не будет работать, поэтому нужно регулярно контролировать, осуществлять своевременный ремонт или замену.

Функции стартера в лампах газоразрядного типа

Независимо от модификации ламп дневного света, основной функцией стартера является их запуск. Он входит в общую структуру пускорегулирующего устройства, питается от сетевого переменного тока с рабочей частотой 50 Гц.

Стартер для люминесцентных ламп

Активация осветительного прибора заключается в подаче на его контактные клеммы повышенного напряжения. Стандартное пусковое устройство внешне выглядит в виде небольшой стеклянной колбы, заполненную изнутри смесью инертных газов. Сама колба защищена от возможных повреждений пластиковым или металлическим корпусом. Снизу к подведены два электрода, которые и обеспечивают контакт с проводами лампы. Некоторые корпуса оборудуются смотровым окошком.

По мнению специалистов, стартеры для люминесцентных ламп обладает повышенной чувствительностью и чаще чем другие компоненты выходит из строя. В таких случаях лампу становится невозможно запустить, и она не будет работать. В случае необходимости этот компонент легко заменить своими руками.

Читайте также:
Подготовленное отверстие для светильника

Основными функциями стартера в системе ПРА являются следующие:

  • Немедленное включение в работу при подаче питающего напряжения.
  • Прогревает электроды.
  • Замыкает и размыкает биметаллическую пластину.
  • Передает повышенный ток к местам образования дуги.
  • Через него ток поступает к дросселю.

Следует помнить, что прямое включение лампы без стартера приводит к снижению срока службы и преждевременному выходу из строя. Эти компоненты бывают электромагнитными или электронными и выбираются в зависимости от конструкции источника света.

Устройство стартера

Различные виды и модификации стартеров в целом имеют одни и те же конструктивные элементы. Они отличаются лишь параметрами, поскольку используются во многих типах ламп. Зная общее устройство стартера, можно легко проверить его работоспособность, выявить неисправности и принять решение о возможности дальнейшего использования.

Итак, любое пусковое устройство состоит из следующих деталей и компонентов:

  • Корпус, изготовленный из металла или пластика, в котором размещаются все составляющие. Он защищает стеклянные детали от повреждений. В верхней части имеется отверстие, снизу выведены наружу ножки контактов.
  • Колба. Сделана из стекла и наполнена газом. Обычно используется неон или смесь водорода и гелия.
  • Электроды – анод и катод. Могут быть исполнены в двух вариантах: симметричные с двумя подвижными контактами или несимметричные, с одной движущейся частью. Каждый из них выведен наружу через цоколь. В практической деятельности чаще всего применяется первый вариант – с симметричной электродной системой.
  • Конденсатор. Играет важную роль в сглаживании высоких токов. Одновременно участвует в размыкании электродов и гасит дугу, возникающую между токоведущими частями. Отсутствие конденсатора может вызвать спайку контактов при появлении дуги, вызывая тем самым преждевременный износ стартера.

Надежная работа стартера обеспечивается биметаллическими электродами, нагрев которых связан с напряжением конкретной электрической сети. Если ток понизился до 80% от номинала, то стартер может не сработать и лампа не загорится. Современный электронный стартер для люминесцентной лампы, применяемый в ЭПРА, практически не подвержен перепадам напряжения и всегда находится в готовности к работе. Поэтому они устанавливаются во всех современных светильниках, а старые пускатели постепенно заменяются приборами нового образца.

При замене следует учесть, что каждой марке люминесцентной лампы требуется соответствующее ей пусковое устройство.

Принцип действия

Действие стартера неразрывно связано с работой всей люминесцентной лампы и происходит в следующем порядке:

  • Перед началом работы электроды разомкнуты.
  • После подачи напряжения из сети, внутри колбы возникает тлеющий разряд с параметрами тока 20-50 мА.
  • Разряд начинает воздействовать на биметаллические электроды, постепенно выполняя их разогрев.
  • Под действием нагрева электроды изгибаются, после чего тлеющий разряд прекращается и далее происходит замыкание электрической цепи внутри лампы.
  • По замкнутой цепи начинается движение электрического тока, разогревающего дроссель и катоды самой лампы.
  • После прекращения тлеющего разряда начинается постепенное остывание биметаллических электродов. В результате, они размыкаются, разгибаются и цепь разрывается.
  • Все предыдущие действия привели к появлению высокого импульсного напряжения, воздействующего на дроссель. Сам дроссель обладает индуктивностью, под влиянием котором лампа начинает зажигаться.
  • Постепенно свечение лампы возрастает и достигает нормы. Поскольку стартер подключен параллельно с лампой, ему уже недостаточно напряжения для создания нового тлеющего разряда, поскольку весь ток уходит на поддержку свечения. Поэтому электроды остаются разомкнутыми, а лампа все равно продолжает работать.

Схема подключения

Независимо от конструкции лампы, каждая схема подключения использует стартер. Обычно используются источники света на 36-40 Вт с соответствующим пусковым устройством.

Порядок действий будет одинаковым для всех люминесцентных ламп:

  • Каждый осветительный прибор оборудуется выходными контактами, установленными с торцов и соединенными с нитями накаливания. Снаружи они выглядят в виде небольших штырьков, к которым параллельно подключается стартер.
  • Для подключения пускового устройства используется один из контактов, расположенных на обеих сторонах лампы.
  • К контактам, оставшимся свободными, параллельно с электрической сетью подключается дроссель.
  • Конденсатор подключается в последнюю очередь параллельно с питающими контактами. Он защищает от сетевых помех и компенсирует реактивную мощность.

Различия в подключении становятся заметными при использовании разного количества источников света, для которых используется отдельная схема. Их особенности проявляются в следующем:

  • При использовании одной лампы стартер подключается параллельно, а дроссель – последовательно между лампой и источником питания. На входных контактах может быть установлен конденсатор, улучшающий параметры электрического тока.
  • В случае использования нескольких лампочек, они последовательно подключаются к питанию вместе с дросселем. Далее, к каждой лампе параллельно подключается стартер. Важным условием является равенство суммарной мощности всех подключенных компонентов, мощности используемого дросселя.

Параметры и маркировка

Выбирая пусковое устройство, необходимо обратить особое внимание на его параметры и технические характеристики:

  • Сроки эксплуатации, установленные производителями. По этому показателю лидируют компании Osram и Phillips, чья продукция способна выдерживать не менее 6 тысяч циклов включения и выключения. Однако, на практике этот параметр не всегда соблюдается по объективным причинам, например, из-за скачков сетевого напряжения.
  • Температурный диапазон рабочего режима. Обычно устанавливается в пределах 5-55 С. Если требуется использовать светильники за пределами установленных норм, то для этих случаев понадобятся специальные стартеры с гораздо более высокой стоимостью.
  • Временной промежуток, при котором катоды полноценно прогреваются. Этим фактором определяется период нахождения биметаллических электродов в замкнутом положении. У разных производителей данный показатель может существенно отличаться.
  • Разновидности и модификации конденсаторов, задействованных в том или ином устройстве. От его конструкции во многом зависит срок эксплуатации прибора.
  • Номинальное рабочее напряжение. Данная характеристика должна обязательно проверяться, поскольку прибор, рассчитанный на 127 В и подключенный к светильнику на 220 В, сразу же выйдет из строя.
Читайте также:
Паяльник своими руками в домашних условиях разными способами

Все параметры отображаются в маркировке устройства. У отечественных приборов она выглядит следующим образом:

  • Буква «С» указывает на принадлежность к категории стартеров.
  • Цифры, стоящие впереди буквы «С», обозначают мощность лампы, для которой предназначен данный стартер.
  • Цифры, нанесенные позади буквы «С», соответствуют параметрам рабочего напряжения, например, 127 или 220.

Таким образом, маркировка 60С-220, приведенная в качестве примера, указывает на устройство, которое является стартером для люминесцентной лампы мощностью 60 Вт, работающей от сети 220 В.

Проверка технического состояния стартера

В случае каких-либо неисправностей осветительного прибора с лампами дневного света, очень часто требуется отдельно проверить работоспособность стартера. В общей конструкции он определяется как довольно простая деталь с небольшими размерами. Поломка пускателя приносит массу проблем, в первую очередь связанных с прекращением работы всей лампы.

Частой причиной неисправности служит изношенная лампа тлеющего разряда или биметаллическая контактная пластина. Внешне это проявляется отказом при запуске или миганием во время работы. Устройство не запускается ни со второй попытки, ни с последующих, поскольку для пуска всей лампы недостаточно напряжения.

Наиболее простым способом проверки является полная замена стартера другим устройством такого же типа. Если после этого лампа нормально включится и заработает, значит причина была именно в пускателе. В данной ситуации измерительные приборы не требуются, однако при отсутствии запасной детали придется создавать простейшую проверочную схему с последовательным соединением стартера и лампы накаливания. После этого через розетку подключить питание 220 В.

Для подобной схемы лучше всего подойдут маломощные лампочки на 40 или 60 ватт. После включения они загораются, а затем со щелчком периодически отключаются на короткое время. Это указывает на исправность стартера и нормальную работу его контактов. Если же лампочка горит постоянно и не моргает или она не зажглась вовсе, следовательно пускатель нерабочий и его необходимо заменить.

В большинстве случаев можно обойтись одной лишь заменой, и лампа вновь заработает. Однако, если стартер точно исправен, а светильник все равно не работает, необходимо последовательно проверять дроссель и другие компоненты схемы.

Неоновые лампы: гид по основным 15 видам

В середине газоразрядные лампы неоновые наполнены под невысоким давлением неоном, что излучает оранжево-красное свечение.

Неоновые лампы: гид по основным 15 видам

Содержимым могут быть и иные благородные газы. Так в трех словах можно объяснить рабочий принцип неоновых ламп.

Редакторы издания ЭтотДом сегодня раскрывают все маленькие детали работы неоновых ламп — от их параметров и области использования до хорошей проверки.

Где удобнее использовать лампы неоновые?

  • Рабочий принцип

Ключевым компонентом лампы считается стеклянная труба, имеющая на каждом конце железный электрод. Они соединяются с цоколем, а сама лампа с сетью через патрон. Функционирует от источника непрерывного и электрического тока.

Подбираются они по напряжению сети (127 — 220 В), по напряжению, когда появляется электроразряд (60 — 550 В), по возможному самому большому току (от 0,2 — 30 Ма).

Фото 1 — Лампа неоновая 220В BA9S EKF

Фото 1 — Лампа неоновая 220В BA9S EKF

Длитетельность службы неоновых моделей не маленькая — 100-1000 ч.

Неоновые устройства сегодня продемонстрированы не только лампочками, но и лентами (неон эластичный) 12 Вольт — светодиодная гирлянда, запаянная в трубку из поливинилхлорида. Ленты бывают монотонными или цветными.

Главное! Неоновые диоды отличаются надежностью и долговечностью. Они годятся и для дома, и для жилой площади, и для освещения очень крупных помещений. Широко используются в ЭВМ, как компонент индикации или в качестве подсветки — домашней или автомобильной, для рекламы которая размещается снаружи.

Читайте также:
Своими руками сделать увлажнитель: рекомендации, советы, идеи

Сфера использования холодного неона:

  • тюнинг машин;
  • подсветка для декора интерьеров;
  • изготовление световых букв, вывесок, автографов;
  • праздничная иллюминация;
  • витринная подсветка, строений, мостов, театральных афиш;
  • оформление казино, дискотек, ресторанов;
  • дизайн ландшафта.

Обзор неоновых ламп:

Присоединение неоновой лампы

Неоновые диоды в рабочий период остаются относительно холодными, так как не греются более 70-80°С.

Плюсы неоновых ламп

  1. срок службы от 80000 часов;
  2. эффектный световой эффект;
  3. пожаро-безопасность, так как устройство не нагревается;
  4. бесшумность работы;
  5. управление яркостью газосветной лампы и подбор желаемого белого оттенка свечения.

Минусы неоновых ламп

  1. хрупкость;
  2. содержание веществ которые вредны для здоровья;
  3. нужно большое напряжение в сети и высоковольтный преобразователь электрической энергии;
  4. большая стоимость.

Каждому благородному газу и парам металла отвечает необыкновенный спектр (состав) света.

Бледно-розовый или светло-жёлтый

Главное! Разные оттенки свечения получаются при совмещении благородных газов или нанесении светонакопительные пигменты светящиеся в темноте на поверхность разрядной трубки.

В процедуре присоединения:

  1. преобразователь электрической энергии выбирают по длине лампы и состава смеси газа, вторичное (выходное) напряжение преобразователя электрической энергии вычисляется по таблицам;
  2. если нет указания в сопроводительных документах, электронные инверторы больше подходят для помещений закрытого типа;
  3. в первую очередь заземление во время установки ламп на улице;
  4. выбирают высоковольтный провод ПМВК необходимого сечения и длины: длина провода должна быть небольшой, для разделения провода от металлических частей конструкции применяют ПВХ-трубки;
  5. лампу устанавливают в поликарбонатные кронштейны, благодаря указанной на трансформаторе схеме, а места соединений проводом изолируются лентой и специализированными трубками;
  6. все токопроводящие части конструкции должны быть заземленными;
  7. так как во время изготовления неновых диодов применяется силикатное стекло, нужно использовать покрытия для защиты из акрилового стекла или прозрачного пластика;
  8. нужно віполнять при установке правила безопасности: не ронять и не трясти лампу — конструкция не должна разгерметизироваться, в другом случае лампа гореть не будет;
  9. чтобы свечение было разного цвета, вовнутрь добавляют ртутные пары и светонакопительный пигмент светящийся в темноте.

В таблице продемонстрированы диоды газосветные тлеющего разряда. Их применяют как световые сигналы в радиотехнических и электротехнических устройствах.

Главное! В обозначении типа лампы конкретно буква «Т» значит «тлеющий» (вид разряда), буква «Н» — «неон» (наименование газонаполнителя), указанные числа — max рабочий ток в миллиамперах.

Ключевые свойства всех неоновых диодов:

  • внешний диаметр;
  • линейная длина;
  • цветность;
  • индекс передачи цвета;
  • поток света при токе 50 мА и 80 мА;
  • употребление мощности при токе 50 мА и 80 мА;
  • электрическая длина.

Индикаторные лампы

Люминесцентная

Сигнальная

Декоративная

Окрас свечения в неоновых лампах всецело во власти от состава газа. Оранжево-красный наиболее свойственен для индикаторных ламп.

Главное! Домашняя лампа-свеча подойдет для светильников с декоративной функцией «под старину».

Лампа дневного света — электрический прибор дневного освещения, смонтированный в собственно предназначающиеся источники освещения. Минус — достаточно часто перегорают.

Фото 2 — Люминесцентная лампа PHILIPS TL-D90 De Luxe

Фото 2 — Люминесцентная модель PHILIPS TL-D90 De Luxe

Сигнальные неоновые диоды – устройства, ориентированные для световой индикации электросигналов. В конструкции — два электрода в качестве цилиндров, дисков или стержней разной комбинации, помещенные в стеклянный баллон. В баллоне под давлением содержится неоновая смесь, предоставляющая красное свечение, или неоново-гелиевая смесь с оранжево-красным свечением.

Фото 3 — Camelion LH26-3U Blacklight E27

Фото 3 — Camelion LH26-3U Blacklight E27

Декоративные неоновые модели предназначаются для установки в простой типовый патрон E14 или E27 и функционирующие от напряжения 220 В. Содержат конструкционно встроенный резистор балластовый, что дает возможность включать их прямо в сеть освещения.

Зеленую флуоресцентную лампу применяют, как сигнальный источник освещения. Внутри стеклянную колбу накрывают специализированной флуоресцирующей субстанцией, что поглощает красный свет и воплощает его в зеленый.

Фото 4 — Лампа люминесцентная T8 спец. - Narva 18Вт / T8 / 019

Фото 4 — Лампа дневного света T8 спец. — Narva 18Вт / T8 / 019

Небольшие неоновые диоды применяют, как подсветку, одновременно со светоизлучающим диодом в паре с компонентом сопротивления. В основном, они запитаны паралельно с ключевыми контактами выключателя.

Главное! Если выключатель в нерабочем положении, то питание светоизлучающего диода выполняется по нити накала в середине диода с малым сопротивлением.

Как выверить исправность ламп?

Проверка газосветных сигнальных неоновых диодов состоит в их зрительном осмотре и испытании под напряжением.

Выверить трудоспособность неоновой лампы можно и ее включением в радиотрансляционную сеть при помощи преобразователя электрической энергии небольшой частоты.

При отсутствии сетей — радиотрансляционной и электрического тока — можно выверить, применяя батарейки и преобразователь электрической энергии небольшой частоты (силового или междулампового).

Лампа дневного света запускается при помощи пускорегулирующей аппаратуры (электромагнитной или электронной). В сегодняшних лампах часто применяется ЭПРА (электронная пускорегулирующая аппаратура).

Читайте также:
Рулонный газон. Особенности, виды, укладка и цена рулонного газона

Для ее проверки рассматривается исправное устройство с аналогичными параметрами и подсоединяется постепенно по схеме к проверяемому диоду. Если осветительный прибор заработал хорошо, то причина поломки в блоке.

Специфики различных вариантов неоновых ламп

  • Сигнальная

Являются факторами безопасности, исправляя работу транспортных систем. К сигнальным лампам относятся и индикаторные, применяющиеся интенсивно в приборах и оборудовании разного направления, служат информационным источником о функционировании прибора.

Используются удачно для освещения и облучения школьных, детских, жилых и административных помещений, тем более если естественного освещения недостаточно. Изготовителями выпускаются специализированные ЛЛ, ориентированные на получение «солнечных ванн».

Плюсы люминесцентных диодов:

  1. предоставляют много света;
  2. увеличивают трудоспособность;
  3. хранят зрение;
  4. уменьшают утомляемость;
  5. оказывают влияние на увеличение настроения.

Главное! Если у лампы дневного света из строя вышли спирали, как зажечь лампу? Это можно выполнить без умножителя напряжения по обыкновенной схеме ЭмПРА.

Активно используется при оформлении разных интерьеров.

Как запустить и как работает перегоревшая лампа люминесцентная?

Производство светодиодных лампочек – не доступное. По хорошему соотношению качество/стоимость абсолютные лидеры — Российская Федерация, КНР, Япония.

Для чего нужен стартер в люминесцентных лампах

Несмотря на бурное развитие полупроводниковых технологий, люминесцентные лампы (ЛЛ) используются широко. Один из основных узлов, обеспечивающих работу источников света этого типа, – стартер. В этой статье мы разберемся, что такое стартер для ламп, для чего он нужен и как работает.

Что такое стартер

Что это за устройство? Для чего стартер вообще нужен? Чтобы разобраться в этом вопросе, выясним, что такое люминесцентная лампа, как она работает и чем отличается от источников света других типов.

Схема включения люминесцентной лампы

Кратко рассмотрим принцип работы люминесцентной лампы. Конструктивно ЛЛ представляет собой стеклянную колбу в форме трубки, в концы которой запаяны два электрода. Трубка заполнена смесью инертных газов с примесью паров ртути. Изнутри она покрыта слоем люминофора – вещества, способного излучать видимый свет при облучении ультрафиолетом.

Конструкция лампы

Конструкция люминесцентной лампы

На рисунке цифрами обозначены:

  • 1 – электрод;
  • 2 – металлическая ртуть;
  • 3 – инертный газ;
  • 4 – люминофор;
  • 5 – стеклянная колба;
  • 6 – двухштырьковый цоколь.

При подаче на электроды лампочки в колбе начинается тлеющий разряд, заставляющий атомы ртути излучать ультрафиолет. Последний воздействует на люминофор, заставляя его ярко светиться.

С первого взгляда все просто, на практике – сложнее. В холодной лампе практически вся ртуть сконденсирована в виде капелек, осевших на колбе. При этом сопротивление газовой среды между электродами настолько велико, что при подаче рабочего напряжения на лампу разряда не возникнет. Чтобы его создать, выполняют следующие условия:

  1. Предварительно подогревают электроды, чтобы увеличить их способность излучать электроны.
  2. Подают повышенное напряжение на электроды, достаточное для пробоя газового промежутка.

Эти задачи исполняет стартер с электромагнитным дросселем. Они являются обязательными элементами любого люминесцентного светильника. Взглянем на классическую схему подключения люминесцентной лампы со стартером и дросселем.

Схема

Схема светильника с ЛЛ

При включении светильника контакты стартера замыкаются. Начинается подогрев спиралей электродов, которые оказываются подключенными последовательно с дросселем к сети. Как только спирали разогреваются, стартер размыкает цепь. На электродах лампы за счет самоиндукции в дросселе появляется импульс высокого (800 – 1 000 В) напряжения, зажигающего лампу.

В трубке начинается разряд, который переводит ртуть в парообразное состояние. Это снижает сопротивление газового промежутка. Теперь ЛЛ функционирует при более низком напряжении – рабочем.

Электромагнитный дроссель кроме запуска лампы исполняет еще одну важную функцию. Благодаря большому реактивному сопротивлению он ограничивает ток через колбу ЛЛ, не давая тлеющему разряду перейти в неуправляемый дуговой. Поэтому дроссели называют балластами.

Устройство и принцип работы

Влияние стартера на люминесцентную лампу мы выяснили, осталось разобраться в принципе его работы. Откуда устройство знает, сколько времени греть спирали? Как определяет, что лампа зажглась и в нем больше не нуждается? Взглянем на конструкцию стартера.

По сути, это малогабаритная газоразрядная лампочка. Подали на нее определенное напряжение – в колбе начался тлеющий разряд, лампочка засветилась. Но эта лампочка имеет одну конструктивную особенность. Один из ее электродов выполнен в виде подвижной биметаллической пластины.

Устройство стартера

Устройство стартера для люминесцентной лампы

На схеме цифрами обозначены:

  • 1 – электрод из биметалла;
  • 2 – неподвижный электрод;
  • 3 – стеклянная колба, заполненная неоном;
  • 4 – выводы электродов;
  • 5 – конденсатор;
  • 6 – защитный кожух (корпус);
  • 7 – цоколь.

Чтобы понять принцип действия стартера, вернемся к схеме подключения ЛЛ, приведенной выше. Итак, включаем светильник в сеть. На электродах лампы и стартере появляется сетевое напряжение. Его недостаточно для пробоя газового промежутка ЛЛ, и она не зажигается.

Читайте также:
Порядок укладки ламината на деревянный пол

Для неоновой лампочки стартера этого напряжения достаточно для запуска. В ее колбе возникает тлеющий разряд, который начинает нагревать электроды. Выполненный из биметалла изгибается и замыкается со вторым, неподвижным. Лампочка стартера тухнет, а ток через его замкнутые контакты начинает течь через спирали ЛЛ, подогревая ее катоды.

Через некоторое время биметаллическая пластина остывает естественным образом и разгибается. Контакт между электродами стартера разрывается, ток в цепи прекращается. Дроссель за счет самоиндукции выдает импульс высокого напряжения, которое прикладывается к катодам люминесцентной лампы. Высоковольтный импульс зажигает в колбе ЛЛ разряд. На ее катодах устанавливается рабочее напряжение – 130-140 В.

Этого напряжения недостаточно для возникновения разряда в лампочке стартера, поскольку ее напряжение зажигания – 180-200 В (для стартеров на 220 В). Таким образом, если ЛЛ запустилась, стартер в дальнейшей ее работе не участвует. Если пуск был неудачным, стартер повторяет процесс розжига.

Для чего нужен конденсатор в схеме

На рисунке выше под номером 5 обозначен конденсатор. О нем мы не сказали. Что это за конденсатор и для чего он нужен? Этот элемент, присутствующий в любом газоразрядном стартере, выполняет функции искрогасящего. Обычно это бумажный или керамический высоковольтный прибор емкостью до 0,05 мкФ.

Искрогасящий конденсатор

Искрогасящий конденсатор в стартере

В момент размыкания электродов неоновой лампы на них, как и на катодах ЛЛ, возникает высоковольтный импульс. Это напряжение вызывает электрическую дугу, которая «тянется» за размыкающимися контактами. В результате контакты горят и могут даже залипнуть, «привариться» друг к другу. Результат – резкое сокращение времени службы стартера, а при залипании контактов – выход из строя. Конденсатор в момент размыкания электродов берет первый удар на себя – он сглаживает фронт высоковольтного импульса, давая время контактам разомкнуться.

Есть еще одна важная функция искрогасящего конденсатора. В момент размыкания электроды пускового устройства представляют собой натуральный искровой разрядник Попова, излучающий электромагнитные волны практически во всех диапазонах. В результате во время пуска люминесцентной лампы в громкоговорителях радиоприемников и звукоусилительной аппаратуры слышен треск, а на экранах телевизоров и мониторов наблюдается рябь. Конденсатор избавляет от всех этих неприятностей.

Не следует путать конденсатор, установленный в пусковом устройстве, с конденсатором, подключаемым параллельно светильнику. Они выполняют разные задачи.

Для чего нужен стартер в люминесцентных лампах

Этот конденсатор уменьшает реактивную составляющую светильника

Как проверить работоспособность

Проверить исправность стартера для люминесцентной лампы просто. Его нужно включить в сеть через обычную лампу накаливания мощностью 20-60 Вт.

проверка стартера (схема)

Схема проверки пускового устройства для ЛЛ

Если лампа накаливания периодически мигает, то стартер исправен. В противном случае пусковое устройство придется заменить.

Мощность лампы накаливания нужно выбирать из диапазона мощностей люминесцентных ламп, на работу с которыми рассчитано пусковое устройство.

Какие бывают стартеры для ламп

Как работает стартер, мы разобрались. Осталось выяснить, какими они бывают и чем отличаются друг от друга. Прежде всего, необходимо знать, что кроме того пускового устройства, работу которого мы разобрали, существует еще один вид стартеров – электронные. Они выполняют те же задачи, но собраны на электронных компонентах – диодах, тиристорах, транзисторах, конденсаторах и т. п.

стартер

Электронный стартер

В чем отличие такого решения от классического с газоразрядной лампочкой? Вот основные преимущества электронной схемы:

  • Больший срок службы. Электронное пусковое устройство не имеет механических контактов, которые подгорают, и биметаллических пластин, имеющих свойство «уставать». В результате срок службы электронного устройства в несколько раз выше обычного газоразрядного.
  • Отсутствие помех. Бесконтактная конструкция излучает минимум электромагнитных помех, а значит, практически не влияет на работу чувствительной аппаратуры.
  • Увеличивает ресурс ЛЛ. Электронное пусковое устройство прогревает спирали оптимальным током и строго заданное время. В результате лампа легче «стартует», спирали ее электродов не разрушаются от перегрева или холодного пуска.
  • Отключение старой лампы. Если ЛЛ выработала ресурс и запускается с трудом (как вариант – запускается и тут же гаснет), то стартер отключает ее от сети.
  • Защита от перегрузки. Если ток через спирали превышает допустимый, стартер отключает светильник. Это позволяет избежать перегрева дросселя и возгорания при неисправности светильника.
  • Широкий диапазон рабочих температур. Электронный вариант способен работать в жестких температурных условиях – от -30 до +85 °С. Это позволяет использовать его в уличных светильниках и на объектах с тяжелыми температурными условиями.
Читайте также:
Подготовленное отверстие для светильника

Стоимость намного выше (до 10-20 раз) газоразрядного стартера. Так что смысл в замене газоразрядного пускового устройства на электронное не всегда есть.

Не следует путать электронный стартер с электронным пускорегулирующим аппаратом (ЭПРА). Первый играет роль пускового устройства и работает с электромагнитным балластом. Второй совмещает балласт и схему пуска. Он используется взамен дросселя и стартера как их электронный аналог.

Теперь об общих отличиях всех стартеров независимо от их конструкции. Пусковые устройства для люминесцентных ламп различают по двум основным характеристикам.

По рабочему напряжению. Как мы выяснили, напряжение зажигания стартера должно быть ниже питающего светильник, но выше рабочего напряжения лампы. В противном случае лампа не запустится (напряжение сети ниже) или стартер не отключится после пуска ЛЛ (рабочее напряжение лампы выше).

Выпускаются стартеры на два рабочих напряжения – 220 и 110 В (обычно указываются в диапазоне 110-130 и 220-240 В). Первые используются с лампами на 220 В, вторые – с лампами на 110 В. Лампы на 110 В могут работать в сети 110 или 220 В. Во втором случае они включаются парой, причем для каждой лампы требуется свой стартер на 110 В.

Полезно! Согласно ГОСТУ ГОСТ 8799-90 (переиздание 2004 г.) стартеры выпускаются на напряжение 127, а не на 110 В.

Пусковое устройство

Пусковое устройство для ламп 110 (слева) и 220 В

По мощности. Имеется в виду мощность ЛЛ, с которой будет работать устройство. Если мощность лампы выйдет из указанного на пусковом устройстве диапазона, то пуск ЛЛ будет ненадежным или не произойдет вовсе. Кроме того, чрезмерно мощная лампа сожжет контакты самого стартера. Обычно диапазон допустимых мощностей ламп указывается на корпусе стартера. К примеру, устройства, изображенные на фото выше, могут работать с ЛЛ мощностью от 4 до 22 Вт.

Есть и менее важные отличия – материал корпуса, влагозащита, устойчивость корпуса к УФ (актуально для уличных светильников), производитель и пр.

Расшифровка маркировки

Единого правила маркировки стартеров для люминесцентных ламп нет. Вариантов обозначений много. Согласно ГОСТ 8799-90 (переиздание 2004 г.) «Межгосударственный стандарт. Стартеры для трубчатых люминесцентных ламп» отечественные пусковые устройства маркируются следующим образом: [ХХ][С]-[YYY]-[Z], где:

  • [ХХ] – мощность лампы, для которой предназначен стартер, причем:
    • 20, 80 – предельные значения мощностей ламп, для которых предназначен стартер, нижний предел мощности составляет 4 Вт;
    • 65, 70, 85, 90, 125 – значения мощности лампы, для которой предназначен стартер.

    Для примера на фото ниже изображены пусковые устройства, предназначенные для ламп мощностью 4-80 Вт и для рабочего напряжения 220 В.

    Стартеры

    Стартеры 80С-220-1 (слева) и 80С-220-2 ГОСТ 8799-90

    Теперь о зарубежной маркировке. Компания OSRAM обычно маркирует свои стартеры буквами ST и трехзначным буквенным кодом.

    Таблица маркировки наиболее популярных пусковых устройств для ЛЛ компании OSRAM

    * для электронной модели.

    Фирма Philips маркирует свои пусковые устройства символом S и цифровым кодом. К примеру, модификация S2 рассчитана на работу с лампами мощностью 4-22 Вт при напряжении 110 или 220 В. S10 предназначена для ламп мощностью 4-65 Вт при напряжении 220 В. Есть и более мощные приборы этой компании. К примеру, стартер S12 может работать с лампами мощностью 115-140 Вт при напряжении 220 В.

    Пусковое устройство

    Пусковое устройство S12 компании Philips

    Фирма Sylvania маркирует свои изделия символами FS с числовым кодом. Чем ниже число, тем большей мощности лампы могут подключаться.

    • FS-11 – 4… 62 Вт;
    • FS-22 – 4… 22 Вт.

    Важно! При желании можно найти и другие маркировки. К примеру, COP или PBS.

    Стартер Sylvania

    Стартер все той же Sylvania с маркировкой PBS к содержанию ↑

    Как подобрать стартер — практические примеры

    Рассмотрим, как выбрать «правильный» стартер для люминесцентной лампы. Главный критерий – рабочее напряжение лампы, с которой будет контактировать пусковое устройство, и ее мощность.

    Обратите внимание – именно лампы, а не светильника, поскольку существуют светильники с несколькими ЛЛ, но стартер мы выбираем именно для лампочки, а не для осветительного прибора.

    Напряжение. Обычно производители не указывают рабочее напряжение на самой лампе, поэтому придется проявить смекалку. Смотрим наш светильник, если необходимо – снимаем защитное стекло и вычисляем рабочее напряжение источника света, ориентируясь на табличку ниже. Именно на такое напряжение и выбираем стартер.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: